Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-223829861633x+39709017594304863\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-223829861633xz^2+39709017594304863z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-18130218792300x+28947928216904622000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(13173349/19321, 534137194488996/2685619)$ | $17.098096742843122100542469397$ | $\infty$ |
$(236523, 0)$ | $0$ | $2$ |
$(308203, 0)$ | $0$ | $2$ |
Integral points
\( \left(-544727, 0\right) \), \( \left(236523, 0\right) \), \( \left(308203, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 436800 \) | = | $2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $36502517411942400000000000000000000$ | = | $2^{30} \cdot 3^{16} \cdot 5^{20} \cdot 7^{2} \cdot 13^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{302773487204995438715379645049}{8911747415025000000000000} \) | = | $2^{-12} \cdot 3^{-16} \cdot 5^{-14} \cdot 7^{-2} \cdot 13^{-2} \cdot 19^{3} \cdot 353415571^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $5.4091660324738127474126279505$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $3.5647263054168445959864001017$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0531819645075955$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.931120363545226$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $17.098096742843122100542469397$ |
|
Real period: | $\Omega$ | ≈ | $0.011521694248931958617581484081$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1024 $ = $ 2^{2}\cdot2^{4}\cdot2^{2}\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $12.607938746220662635258649544 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 12.607938746 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.011522 \cdot 17.098097 \cdot 1024}{4^2} \\ & \approx 12.607938746\end{aligned}$$
Modular invariants
Modular form 436800.2.a.to
For more coefficients, see the Downloads section to the right.
Modular degree: | 3963617280 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{20}^{*}$ | additive | 1 | 6 | 30 | 12 |
$3$ | $16$ | $I_{16}$ | split multiplicative | -1 | 1 | 16 | 16 |
$5$ | $4$ | $I_{14}^{*}$ | additive | 1 | 2 | 20 | 14 |
$7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$13$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3640 = 2^{3} \cdot 5 \cdot 7 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 731 & 2 \\ 726 & 1819 \end{array}\right),\left(\begin{array}{rr} 561 & 4 \\ 1122 & 9 \end{array}\right),\left(\begin{array}{rr} 521 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1823 & 3636 \\ 1824 & 3635 \end{array}\right),\left(\begin{array}{rr} 3637 & 4 \\ 3636 & 5 \end{array}\right),\left(\begin{array}{rr} 911 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1819 & 0 \\ 0 & 3639 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[3640])$ is a degree-$811550638080$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3640\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 25 = 5^{2} \) |
$3$ | split multiplicative | $4$ | \( 145600 = 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) |
$5$ | additive | $18$ | \( 17472 = 2^{6} \cdot 3 \cdot 7 \cdot 13 \) |
$7$ | split multiplicative | $8$ | \( 62400 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 33600 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 436800to
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 2730k2, its twist by $40$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.