Properties

Label 436800gv
Number of curves $2$
Conductor $436800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gv1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 436800gv have rank \(0\).

Complex multiplication

The elliptic curves in class 436800gv do not have complex multiplication.

Modular form 436800.2.a.gv

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{7} + q^{9} - 2 q^{11} - q^{13} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 436800gv

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
436800.gv1 436800gv1 \([0, -1, 0, -20333, 1115037]\) \(58107136000/464373\) \(7429968000000\) \([2]\) \(884736\) \(1.2973\) \(\Gamma_0(N)\)-optimal
436800.gv2 436800gv2 \([0, -1, 0, -6833, 2559537]\) \(-137842000/10955763\) \(-2804675328000000\) \([2]\) \(1769472\) \(1.6438\)