Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-561152033x+5049497675937\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-561152033xz^2+5049497675937z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-45453314700x+3680947445814000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(8281, 985088)$ | $4.2044302682414270325605320776$ | $\infty$ |
| $(12377, 0)$ | $0$ | $2$ |
| $(14937, 0)$ | $0$ | $2$ |
Integral points
\( \left(-27313, 0\right) \), \((-1313,\pm 2405000)\), \((8281,\pm 985088)\), \( \left(12377, 0\right) \), \( \left(14937, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 436800 \) | = | $2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $294859780339138560000000000$ | = | $2^{26} \cdot 3^{8} \cdot 5^{10} \cdot 7^{4} \cdot 13^{4} $ |
|
| j-invariant: | $j$ | = | \( \frac{4770955732122964500481}{71987251059360000} \) | = | $2^{-8} \cdot 3^{-8} \cdot 5^{-4} \cdot 7^{-4} \cdot 13^{-4} \cdot 3217^{3} \cdot 5233^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.8812908387274590556546434852$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.0368511116704909042284156364$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0084981242776025$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.547765491421026$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.2044302682414270325605320776$ |
|
| Real period: | $\Omega$ | ≈ | $0.054800837923833056139382714080$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 512 $ = $ 2^{2}\cdot2\cdot2^{2}\cdot2^{2}\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.3730016541426042717806590161 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.373001654 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.054801 \cdot 4.204430 \cdot 512}{4^2} \\ & \approx 7.373001654\end{aligned}$$
Modular invariants
Modular form 436800.2.a.gl
For more coefficients, see the Downloads section to the right.
| Modular degree: | 150994944 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{16}^{*}$ | additive | 1 | 6 | 26 | 8 |
| $3$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
| $5$ | $4$ | $I_{4}^{*}$ | additive | 1 | 2 | 10 | 4 |
| $7$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $13$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 8.48.0.44 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 7280 = 2^{4} \cdot 5 \cdot 7 \cdot 13 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 8 & 129 \end{array}\right),\left(\begin{array}{rr} 6385 & 76 \\ 6904 & 5375 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 4161 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2805 & 4 \\ 4436 & 7245 \end{array}\right),\left(\begin{array}{rr} 895 & 7272 \\ 6952 & 2555 \end{array}\right),\left(\begin{array}{rr} 2899 & 7268 \\ 4276 & 7195 \end{array}\right),\left(\begin{array}{rr} 7265 & 16 \\ 7264 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[7280])$ is a degree-$811550638080$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/7280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 25 = 5^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 145600 = 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) |
| $5$ | additive | $18$ | \( 17472 = 2^{6} \cdot 3 \cdot 7 \cdot 13 \) |
| $7$ | split multiplicative | $8$ | \( 62400 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) |
| $13$ | split multiplicative | $14$ | \( 33600 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 436800gl
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 2730v3, its twist by $40$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.