Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-552833x-1128206463\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-552833xz^2-1128206463z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-44779500x-822596850000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(34057/9, 6094592/27)$ | $6.8850602208745401329837707173$ | $\infty$ |
$(1217, 0)$ | $0$ | $2$ |
Integral points
\( \left(1217, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 436800 \) | = | $2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $-539237357568000000000$ | = | $-1 \cdot 2^{20} \cdot 3^{10} \cdot 5^{9} \cdot 7^{3} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( -\frac{36495256013}{1053197964} \) | = | $-1 \cdot 2^{-2} \cdot 3^{-10} \cdot 7^{-3} \cdot 13^{-1} \cdot 31^{3} \cdot 107^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6585275860663906981595482157$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.41172838090089745308313053359$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9628713153510475$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.251195921691732$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.8850602208745401329837707173$ |
|
Real period: | $\Omega$ | ≈ | $0.071421235601093129375516078774$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 48 $ = $ 2^{2}\cdot2\cdot2\cdot3\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.9008740979535379655094928099 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.900874098 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.071421 \cdot 6.885060 \cdot 48}{2^2} \\ & \approx 5.900874098\end{aligned}$$
Modular invariants
Modular form 436800.2.a.fq
For more coefficients, see the Downloads section to the right.
Modular degree: | 20275200 |
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{10}^{*}$ | additive | 1 | 6 | 20 | 2 |
$3$ | $2$ | $I_{10}$ | nonsplit multiplicative | 1 | 1 | 10 | 10 |
$5$ | $2$ | $III^{*}$ | additive | -1 | 2 | 9 | 0 |
$7$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 8402 & 1 \\ 6719 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3641 & 4 \\ 7282 & 9 \end{array}\right),\left(\begin{array}{rr} 4682 & 1 \\ 3119 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 5461 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 1369 & 9556 \\ 6824 & 4095 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 2188 & 1 \\ 2183 & 0 \end{array}\right),\left(\begin{array}{rr} 10917 & 4 \\ 10916 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$155817722511360$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 455 = 5 \cdot 7 \cdot 13 \) |
$3$ | nonsplit multiplicative | $4$ | \( 20800 = 2^{6} \cdot 5^{2} \cdot 13 \) |
$5$ | additive | $14$ | \( 5824 = 2^{6} \cdot 7 \cdot 13 \) |
$7$ | split multiplicative | $8$ | \( 62400 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 33600 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 436800fq
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 13650n1, its twist by $40$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.