Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-3130433x-2130367263\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-3130433xz^2-2130367263z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-253565100x-1553798430000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-1029, 492)$ | $4.9046237012893069049040825128$ | $\infty$ |
| $(-1033, 0)$ | $0$ | $2$ |
Integral points
\( \left(-1033, 0\right) \), \((-1029,\pm 492)\), \((17192,\pm 2241675)\)
Invariants
| Conductor: | $N$ | = | \( 436800 \) | = | $2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $792348770304000000$ | = | $2^{20} \cdot 3^{12} \cdot 5^{6} \cdot 7 \cdot 13 $ |
|
| j-invariant: | $j$ | = | \( \frac{828279937799497}{193444524} \) | = | $2^{-2} \cdot 3^{-12} \cdot 7^{-1} \cdot 13^{-1} \cdot 93913^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4250830598687241004473869052$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.58064333281175594902115905640$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9834700067632124$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.349168064916643$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.9046237012893069049040825128$ |
|
| Real period: | $\Omega$ | ≈ | $0.11350226455581362852991975918$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2^{2}\cdot2\cdot2^{2}\cdot1\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.4534871751236219894792082169 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.453487175 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.113502 \cdot 4.904624 \cdot 32}{2^2} \\ & \approx 4.453487175\end{aligned}$$
Modular invariants
Modular form 436800.2.a.bg
For more coefficients, see the Downloads section to the right.
| Modular degree: | 9437184 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{10}^{*}$ | additive | -1 | 6 | 20 | 2 |
| $3$ | $2$ | $I_{12}$ | nonsplit multiplicative | 1 | 1 | 12 | 12 |
| $5$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4996 & 2185 \\ 335 & 6 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 2183 & 0 \\ 0 & 10919 \end{array}\right),\left(\begin{array}{rr} 5184 & 8455 \\ 2975 & 744 \end{array}\right),\left(\begin{array}{rr} 269 & 270 \\ 2990 & 6269 \end{array}\right),\left(\begin{array}{rr} 1516 & 2185 \\ 4895 & 6 \end{array}\right),\left(\begin{array}{rr} 3641 & 6560 \\ 1460 & 4401 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 10914 & 10915 \end{array}\right),\left(\begin{array}{rr} 10913 & 8 \\ 10912 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$38954430627840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 2275 = 5^{2} \cdot 7 \cdot 13 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 145600 = 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) |
| $5$ | additive | $14$ | \( 17472 = 2^{6} \cdot 3 \cdot 7 \cdot 13 \) |
| $7$ | nonsplit multiplicative | $8$ | \( 62400 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) |
| $13$ | split multiplicative | $14$ | \( 33600 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 436800bg
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 546c3, its twist by $-40$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.