Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-2624833x-267817537\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-2624833xz^2-267817537z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-212611500x-194601150000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-1567, 0)$ | $0$ | $2$ |
Integral points
\( \left(-1567, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 436800 \) | = | $2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $1126620907776000000000$ | = | $2^{17} \cdot 3^{12} \cdot 5^{9} \cdot 7^{2} \cdot 13^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{7812480469498}{4400862921} \) | = | $2 \cdot 3^{-12} \cdot 7^{-2} \cdot 13^{-2} \cdot 15749^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.7295368462243303588453240781$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.54049990610549922288700907278$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9843288966942432$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.308477164250694$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.12769989407690205708783023100$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 192 $ = $ 2\cdot( 2^{2} \cdot 3 )\cdot2\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $6.1295949156912987402158510879 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 6.129594916 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.127700 \cdot 1.000000 \cdot 192}{2^2} \\ & \approx 6.129594916\end{aligned}$$
Modular invariants
Modular form 436800.2.a.ox
For more coefficients, see the Downloads section to the right.
| Modular degree: | 23592960 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{7}^{*}$ | additive | -1 | 6 | 17 | 0 |
| $3$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
| $5$ | $2$ | $III^{*}$ | additive | -1 | 2 | 9 | 0 |
| $7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $13$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 520 = 2^{3} \cdot 5 \cdot 13 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 41 & 4 \\ 82 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 457 & 66 \\ 64 & 455 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 259 & 0 \end{array}\right),\left(\begin{array}{rr} 517 & 4 \\ 516 & 5 \end{array}\right),\left(\begin{array}{rr} 108 & 1 \\ 103 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[520])$ is a degree-$1610219520$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/520\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 5 \) |
| $3$ | split multiplicative | $4$ | \( 145600 = 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) |
| $5$ | additive | $14$ | \( 17472 = 2^{6} \cdot 3 \cdot 7 \cdot 13 \) |
| $7$ | nonsplit multiplicative | $8$ | \( 62400 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 33600 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 436800.ox
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 54600.t1, its twist by $-40$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.