Properties

Label 436800.kn
Number of curves $4$
Conductor $436800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("kn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 436800.kn have rank \(1\).

Complex multiplication

The elliptic curves in class 436800.kn do not have complex multiplication.

Modular form 436800.2.a.kn

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} - 6 q^{11} + q^{13} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 436800.kn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
436800.kn1 436800kn3 \([0, 1, 0, -82357633, -287703503137]\) \(15082569606665230489/7751016000\) \(31748161536000000000\) \([2]\) \(47775744\) \(3.0741\)  
436800.kn2 436800kn4 \([0, 1, 0, -81909633, -290987791137]\) \(-14837772556740428569/342100087875000\) \(-1401241959936000000000000\) \([2]\) \(95551488\) \(3.4206\)  
436800.kn3 436800kn1 \([0, 1, 0, -1213633, -231479137]\) \(48264326765929/22299191460\) \(91337488220160000000\) \([2]\) \(15925248\) \(2.5248\) \(\Gamma_0(N)\)-optimal*
436800.kn4 436800kn2 \([0, 1, 0, 4274367, -1740679137]\) \(2108526614950391/1540302022350\) \(-6309077083545600000000\) \([2]\) \(31850496\) \(2.8713\)  
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 0 curves highlighted, and conditionally curve 436800.kn1.