Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2+1142367x+5309539137\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z+1142367xz^2+5309539137z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+92531700x+3870931626000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(6941, 589568)$ | $2.9376835375459326089295732837$ | $\infty$ |
Integral points
\((6941,\pm 589568)\)
Invariants
Conductor: | $N$ | = | \( 436800 \) | = | $2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $-12275758416789504000000$ | = | $-1 \cdot 2^{25} \cdot 3^{7} \cdot 5^{6} \cdot 7^{7} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( \frac{40251338884511}{2997011332224} \) | = | $2^{-7} \cdot 3^{-7} \cdot 7^{-7} \cdot 13^{-1} \cdot 43^{3} \cdot 797^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9180323265560279239985453408$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.0735925994990597725723174920$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0387829692161805$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.489704699457755$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.9376835375459326089295732837$ |
|
Real period: | $\Omega$ | ≈ | $0.096787921321324883212226616846$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 28 $ = $ 2^{2}\cdot1\cdot1\cdot7\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $7.9613039267705182075431552937 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.961303927 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.096788 \cdot 2.937684 \cdot 28}{1^2} \\ & \approx 7.961303927\end{aligned}$$
Modular invariants
Modular form 436800.2.a.jy
For more coefficients, see the Downloads section to the right.
Modular degree: | 31610880 |
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{15}^{*}$ | additive | -1 | 6 | 25 | 7 |
$3$ | $1$ | $I_{7}$ | nonsplit multiplicative | 1 | 1 | 7 | 7 |
$5$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$7$ | $7$ | $I_{7}$ | split multiplicative | -1 | 1 | 7 | 7 |
$13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$7$ | 7B.6.1 | 7.24.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $96$, genus $2$, and generators
$\left(\begin{array}{rr} 4376 & 1645 \\ 9275 & 8886 \end{array}\right),\left(\begin{array}{rr} 10907 & 14 \\ 10906 & 15 \end{array}\right),\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6544 & 6545 \\ 9835 & 4374 \end{array}\right),\left(\begin{array}{rr} 6544 & 6545 \\ 7105 & 4374 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 2183 & 0 \\ 0 & 10919 \end{array}\right),\left(\begin{array}{rr} 736 & 4375 \\ 2905 & 6546 \end{array}\right),\left(\begin{array}{rr} 5216 & 4375 \\ 9905 & 6546 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$19477215313920$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 6825 = 3 \cdot 5^{2} \cdot 7 \cdot 13 \) |
$3$ | nonsplit multiplicative | $4$ | \( 145600 = 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) |
$5$ | additive | $14$ | \( 17472 = 2^{6} \cdot 3 \cdot 7 \cdot 13 \) |
$7$ | split multiplicative | $8$ | \( 20800 = 2^{6} \cdot 5^{2} \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 33600 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
7.
Its isogeny class 436800.jy
consists of 2 curves linked by isogenies of
degree 7.
Twists
The minimal quadratic twist of this elliptic curve is 546.f2, its twist by $-40$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.