Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-600033x+178979937\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-600033xz^2+178979937z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-48602700x+130330566000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(16841, 2183168)$ | $4.9790937947981482300903418008$ | $\infty$ |
| $(457, 0)$ | $0$ | $2$ |
Integral points
\( \left(457, 0\right) \), \((16841,\pm 2183168)\)
Invariants
| Conductor: | $N$ | = | \( 436800 \) | = | $2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $18606981120000000$ | = | $2^{26} \cdot 3 \cdot 5^{7} \cdot 7 \cdot 13^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{5832972054001}{4542720} \) | = | $2^{-8} \cdot 3^{-1} \cdot 5^{-1} \cdot 7^{-1} \cdot 13^{-2} \cdot 47^{3} \cdot 383^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0531578029505998333967929724$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.20871807589363168197056512360$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.907047640144071$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.9675759732069023$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.9790937947981482300903418008$ |
|
| Real period: | $\Omega$ | ≈ | $0.38400224961542124584126541936$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot1\cdot2\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.6479328729946941109810042460 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.647932873 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.384002 \cdot 4.979094 \cdot 16}{2^2} \\ & \approx 7.647932873\end{aligned}$$
Modular invariants
Modular form 436800.2.a.jt
For more coefficients, see the Downloads section to the right.
| Modular degree: | 4718592 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{16}^{*}$ | additive | 1 | 6 | 26 | 8 |
| $3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $5$ | $2$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
| $7$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $13$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 16.24.0.8 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 21840 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 17464 & 21839 \\ 8657 & 21830 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 21825 & 16 \\ 21824 & 17 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 21742 & 21827 \end{array}\right),\left(\begin{array}{rr} 15616 & 5 \\ 9315 & 21826 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 19121 & 16 \\ 13586 & 16287 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 21836 & 21837 \end{array}\right),\left(\begin{array}{rr} 13 & 16 \\ 16544 & 21525 \end{array}\right),\left(\begin{array}{rr} 14576 & 5 \\ 21795 & 21826 \end{array}\right),\left(\begin{array}{rr} 21839 & 21824 \\ 16380 & 16379 \end{array}\right)$.
The torsion field $K:=\Q(E[21840])$ is a degree-$155817722511360$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/21840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 525 = 3 \cdot 5^{2} \cdot 7 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 145600 = 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) |
| $5$ | additive | $18$ | \( 17472 = 2^{6} \cdot 3 \cdot 7 \cdot 13 \) |
| $7$ | split multiplicative | $8$ | \( 62400 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) |
| $13$ | split multiplicative | $14$ | \( 33600 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 436800.jt
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 2730.u5, its twist by $40$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.