Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-936033x-15271308063\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-936033xz^2-15271308063z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-75818700x-11133011034000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(9897, 972000)$ | $2.4895468973990741150451709004$ | $\infty$ |
$(2607, 0)$ | $0$ | $2$ |
Integral points
\( \left(2607, 0\right) \), \((9897,\pm 972000)\)
Invariants
Conductor: | $N$ | = | \( 436800 \) | = | $2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $-100699580762726400000000$ | = | $-1 \cdot 2^{19} \cdot 3^{8} \cdot 5^{8} \cdot 7^{8} \cdot 13 $ |
|
j-invariant: | $j$ | = | \( -\frac{22143063655441}{24584858584650} \) | = | $-1 \cdot 2^{-1} \cdot 3^{-8} \cdot 5^{-2} \cdot 7^{-8} \cdot 13^{-1} \cdot 28081^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.0928785737905177975226411546$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.2484388467335496460964133058$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0265231881197245$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.652390568012105$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.4895468973990741150451709004$ |
|
Real period: | $\Omega$ | ≈ | $0.048000281201927655730158177420$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 256 $ = $ 2^{2}\cdot2\cdot2^{2}\cdot2^{3}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $7.6479328729946941109810042460 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.647932873 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.048000 \cdot 2.489547 \cdot 256}{2^2} \\ & \approx 7.647932873\end{aligned}$$
Modular invariants
Modular form 436800.2.a.jt
For more coefficients, see the Downloads section to the right.
Modular degree: | 37748736 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{9}^{*}$ | additive | 1 | 6 | 19 | 1 |
$3$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
$5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
$7$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.24.0.94 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 21840 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 17459 & 21824 \\ 8992 & 315 \end{array}\right),\left(\begin{array}{rr} 11768 & 1 \\ 15199 & 10 \end{array}\right),\left(\begin{array}{rr} 18721 & 16 \\ 18728 & 129 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 21825 & 16 \\ 21824 & 17 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 21742 & 21827 \end{array}\right),\left(\begin{array}{rr} 16364 & 16379 \\ 10761 & 10910 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 21836 & 21837 \end{array}\right),\left(\begin{array}{rr} 14561 & 16 \\ 7288 & 129 \end{array}\right),\left(\begin{array}{rr} 19118 & 5461 \\ 2809 & 10930 \end{array}\right)$.
The torsion field $K:=\Q(E[21840])$ is a degree-$155817722511360$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/21840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 325 = 5^{2} \cdot 13 \) |
$3$ | nonsplit multiplicative | $4$ | \( 145600 = 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) |
$5$ | additive | $18$ | \( 17472 = 2^{6} \cdot 3 \cdot 7 \cdot 13 \) |
$7$ | split multiplicative | $8$ | \( 62400 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 33600 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 436800.jt
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 2730.u3, its twist by $40$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.