Properties

Label 436800.jt
Number of curves $6$
Conductor $436800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("jt1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 436800.jt have rank \(1\).

Complex multiplication

The elliptic curves in class 436800.jt do not have complex multiplication.

Modular form 436800.2.a.jt

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{7} + q^{9} + 4 q^{11} + q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 436800.jt

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
436800.jt1 436800jt6 \([0, -1, 0, -97864033, -372601580063]\) \(25306558948218234961/4478906250\) \(18345600000000000000\) \([2]\) \(37748736\) \(3.0929\)  
436800.jt2 436800jt4 \([0, -1, 0, -6136033, -5781308063]\) \(6237734630203441/82168222500\) \(336561039360000000000\) \([2, 2]\) \(18874368\) \(2.7463\)  
436800.jt3 436800jt5 \([0, -1, 0, -936033, -15271308063]\) \(-22143063655441/24584858584650\) \(-100699580762726400000000\) \([2]\) \(37748736\) \(3.0929\)  
436800.jt4 436800jt2 \([0, -1, 0, -728033, 97187937]\) \(10418796526321/5038160400\) \(20636304998400000000\) \([2, 2]\) \(9437184\) \(2.3997\)  
436800.jt5 436800jt1 \([0, -1, 0, -600033, 178979937]\) \(5832972054001/4542720\) \(18606981120000000\) \([2]\) \(4718592\) \(2.0532\) \(\Gamma_0(N)\)-optimal*
436800.jt6 436800jt3 \([0, -1, 0, 2631967, 738947937]\) \(492271755328079/342606902820\) \(-1403317873950720000000\) \([2]\) \(18874368\) \(2.7463\)  
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 0 curves highlighted, and conditionally curve 436800.jt1.