Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-1580549633x-24185265568863\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-1580549633xz^2-24185265568863z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-128024520300x-17631442673262000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-22953, 0)$ | $0$ | $2$ |
Integral points
\( \left(-22953, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 436800 \) | = | $2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $21668120248320000000$ | = | $2^{20} \cdot 3^{3} \cdot 5^{7} \cdot 7^{3} \cdot 13^{4} $ |
|
j-invariant: | $j$ | = | \( \frac{106607603143751752938169}{5290068420} \) | = | $2^{-2} \cdot 3^{-3} \cdot 5^{-1} \cdot 7^{-3} \cdot 13^{-4} \cdot 83^{3} \cdot 397^{3} \cdot 1439^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.6330604638664137362818330103$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.7886207368094455848556051615$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0177584325921658$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.786970311619021$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.023944045002892057337208395207$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 192 $ = $ 2^{2}\cdot1\cdot2^{2}\cdot3\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.1493141601388187521860029700 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.149314160 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.023944 \cdot 1.000000 \cdot 192}{2^2} \\ & \approx 1.149314160\end{aligned}$$
Modular invariants
Modular form 436800.2.a.io
For more coefficients, see the Downloads section to the right.
Modular degree: | 127401984 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{10}^{*}$ | additive | -1 | 6 | 20 | 2 |
$3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$5$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
$7$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$13$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 2168 & 10917 \\ 2643 & 86 \end{array}\right),\left(\begin{array}{rr} 16 & 5481 \\ 1535 & 3266 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 4201 & 24 \\ 6732 & 289 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 9614 & 1691 \end{array}\right),\left(\begin{array}{rr} 7719 & 5912 \\ 4 & 8731 \end{array}\right),\left(\begin{array}{rr} 10897 & 24 \\ 10896 & 25 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2729 & 10896 \\ 2730 & 10919 \end{array}\right),\left(\begin{array}{rr} 4696 & 3 \\ 1101 & 10834 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$4869303828480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 525 = 3 \cdot 5^{2} \cdot 7 \) |
$3$ | nonsplit multiplicative | $4$ | \( 20800 = 2^{6} \cdot 5^{2} \cdot 13 \) |
$5$ | additive | $18$ | \( 17472 = 2^{6} \cdot 3 \cdot 7 \cdot 13 \) |
$7$ | split multiplicative | $8$ | \( 62400 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 33600 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 4, 6 and 12.
Its isogeny class 436800.io
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 2730.o3, its twist by $-40$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.