Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-1031233x-404969663\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-1031233xz^2-404969663z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-83529900x-295473474000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(14626941913/6007401, 1579859836416944/14724139851)$ | $21.715834260304457562616184966$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 436800 \) | = | $2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $-782459897856000000$ | = | $-1 \cdot 2^{17} \cdot 3 \cdot 5^{6} \cdot 7^{3} \cdot 13^{5} $ |
|
| j-invariant: | $j$ | = | \( -\frac{59219479733906}{382060497} \) | = | $-1 \cdot 2 \cdot 3^{-1} \cdot 7^{-3} \cdot 13^{-5} \cdot 30937^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2701987030323186777744531250$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.48352124102201263546632795299$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.964946780244582$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.093519942334742$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $21.715834260304457562616184966$ |
|
| Real period: | $\Omega$ | ≈ | $0.074879492456427481415318552297$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2^{2}\cdot1\cdot1\cdot1\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $6.5042825907179883435500353062 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.504282591 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.074879 \cdot 21.715834 \cdot 4}{1^2} \\ & \approx 6.504282591\end{aligned}$$
Modular invariants
Modular form 436800.2.a.fc
For more coefficients, see the Downloads section to the right.
| Modular degree: | 9123840 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{7}^{*}$ | additive | 1 | 6 | 17 | 0 |
| $3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $5$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $7$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $13$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2184 = 2^{3} \cdot 3 \cdot 7 \cdot 13 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1457 & 2 \\ 1457 & 3 \end{array}\right),\left(\begin{array}{rr} 2017 & 2 \\ 2017 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1093 & 2 \\ 1093 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2183 & 2 \\ 2182 & 3 \end{array}\right),\left(\begin{array}{rr} 1249 & 2 \\ 1249 & 3 \end{array}\right),\left(\begin{array}{rr} 1639 & 2 \\ 1639 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 2183 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[2184])$ is a degree-$1947721531392$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2184\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 6825 = 3 \cdot 5^{2} \cdot 7 \cdot 13 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 20800 = 2^{6} \cdot 5^{2} \cdot 13 \) |
| $5$ | additive | $14$ | \( 1344 = 2^{6} \cdot 3 \cdot 7 \) |
| $7$ | nonsplit multiplicative | $8$ | \( 62400 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 33600 = 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 436800.fc consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 2184.a1, its twist by $40$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.