Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-719103x-234311902\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-719103xz^2-234311902z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-719103x-234311902\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-479, 486)$ | $2.3270009548426094062437671613$ | $\infty$ |
| $(-491, 630)$ | $2.6249895824423785857740608227$ | $\infty$ |
| $(-473, 0)$ | $0$ | $2$ |
| $(979, 0)$ | $0$ | $2$ |
Integral points
\( \left(-506, 0\right) \), \((-491,\pm 630)\), \((-479,\pm 486)\), \( \left(-473, 0\right) \), \( \left(979, 0\right) \), \((1114,\pm 18630)\), \((1309,\pm 32670)\), \((2189,\pm 93170)\), \((2761,\pm 137214)\), \((7513,\pm 646866)\), \((9619,\pm 939600)\), \((16951,\pm 2204136)\)
Invariants
| Conductor: | $N$ | = | \( 43560 \) | = | $2^{3} \cdot 3^{2} \cdot 5 \cdot 11^{2}$ |
|
| Discriminant: | $\Delta$ | = | $81009136410681600$ | = | $2^{8} \cdot 3^{10} \cdot 5^{2} \cdot 11^{8} $ |
|
| j-invariant: | $j$ | = | \( \frac{124386546256}{245025} \) | = | $2^{4} \cdot 3^{-4} \cdot 5^{-2} \cdot 7^{3} \cdot 11^{-2} \cdot 283^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.1325021460993166904425056089$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.077849755007220300230910212850$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.919207014677319$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.8746860680972315$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.0259712257814962906997803319$ |
|
| Real period: | $\Omega$ | ≈ | $0.16396576281058555903557876483$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2^{2}\cdot2^{2}\cdot2\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $7.9044237496792187166973519288 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.904423750 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.163966 \cdot 6.025971 \cdot 128}{4^2} \\ & \approx 7.904423750\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 491520 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{1}^{*}$ | additive | -1 | 3 | 8 | 0 |
| $3$ | $4$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
| $5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $11$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 660 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 119 & 438 \\ 0 & 659 \end{array}\right),\left(\begin{array}{rr} 331 & 444 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 439 & 0 \\ 0 & 659 \end{array}\right),\left(\begin{array}{rr} 397 & 444 \\ 354 & 229 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 657 & 4 \\ 656 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[660])$ is a degree-$608256000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/660\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 1089 = 3^{2} \cdot 11^{2} \) |
| $3$ | additive | $8$ | \( 4840 = 2^{3} \cdot 5 \cdot 11^{2} \) |
| $5$ | nonsplit multiplicative | $6$ | \( 8712 = 2^{3} \cdot 3^{2} \cdot 11^{2} \) |
| $11$ | additive | $72$ | \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 43560cb
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1320j2, its twist by $33$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $4$ | \(\Q(\sqrt{-3}, \sqrt{-11})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{5}, \sqrt{-33})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{3}, \sqrt{55})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | 16.0.36004060626969600000000.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | nonsplit | ord | add | ord | ord | ord | ss | ord | ss | ord | ord | ss | ord |
| $\lambda$-invariant(s) | - | - | 2 | 2 | - | 2 | 2 | 2 | 2,4 | 2 | 2,2 | 2 | 2 | 2,2 | 2 |
| $\mu$-invariant(s) | - | - | 0 | 0 | - | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.