Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+1597200x-1187751125\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+1597200xz^2-1187751125z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+1597200x-1187751125\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(15822825665/4761124, 2099075895194625/10388772568)$ | $19.085803213675696512967267421$ | $\infty$ |
| $(605, 0)$ | $0$ | $2$ |
Integral points
\( \left(605, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 435600 \) | = | $2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-870215332536618750000$ | = | $-1 \cdot 2^{4} \cdot 3^{10} \cdot 5^{8} \cdot 11^{9} $ |
|
| j-invariant: | $j$ | = | \( \frac{1048576}{2025} \) | = | $2^{20} \cdot 3^{-4} \cdot 5^{-2}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.7025086572339774914995024478$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.68098695810255388601736822790$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.1045429196897352$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.259993625746379$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $19.085803213675696512967267421$ |
|
| Real period: | $\Omega$ | ≈ | $0.082517340584097355078520392697$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 1\cdot2^{2}\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $12.599277792831498204435466711 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 12.599277793 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.082517 \cdot 19.085803 \cdot 32}{2^2} \\ & \approx 12.599277793\end{aligned}$$
Modular invariants
Modular form 435600.2.a.tp
For more coefficients, see the Downloads section to the right.
| Modular degree: | 19464192 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $II$ | additive | -1 | 4 | 4 | 0 |
| $3$ | $4$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
| $5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
| $11$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.4 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 368 & 3 \\ 1157 & 1304 \end{array}\right),\left(\begin{array}{rr} 1 & 998 \\ 330 & 331 \end{array}\right),\left(\begin{array}{rr} 1313 & 8 \\ 1312 & 9 \end{array}\right),\left(\begin{array}{rr} 881 & 8 \\ 884 & 33 \end{array}\right),\left(\begin{array}{rr} 5 & 8 \\ 48 & 77 \end{array}\right),\left(\begin{array}{rr} 5 & 2 \\ 814 & 9 \end{array}\right),\left(\begin{array}{rr} 3 & 8 \\ 1312 & 1299 \end{array}\right),\left(\begin{array}{rr} 665 & 332 \\ 332 & 661 \end{array}\right)$.
The torsion field $K:=\Q(E[1320])$ is a degree-$9732096000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1320\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \) |
| $3$ | additive | $8$ | \( 48400 = 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
| $5$ | additive | $18$ | \( 17424 = 2^{4} \cdot 3^{2} \cdot 11^{2} \) |
| $11$ | additive | $42$ | \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 435600tp
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 7260l1, its twist by $-660$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.