Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2=x^3-1437489075x-20977558582750\) | (homogenize, simplify) | 
| \(y^2z=x^3-1437489075xz^2-20977558582750z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-1437489075x-20977558582750\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(182830033202904428665/3288001978574404, 1588853275620588048856115913525/188537656829636714353208)$ | $44.278974976250477864589701137$ | $\infty$ | 
| $(-21890, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-21890, 0\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 435600 \) | = | $2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}$ |  | 
| Discriminant: | $\Delta$ | = | $51142131572400000000$ | = | $2^{10} \cdot 3^{8} \cdot 5^{8} \cdot 11^{7} $ |  | 
| j-invariant: | $j$ | = | \( \frac{15897679904620804}{2475} \) | = | $2^{2} \cdot 3^{-2} \cdot 5^{-2} \cdot 11^{-1} \cdot 23^{3} \cdot 71^{3} \cdot 97^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.6283608677264145319546578227$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.49776548030950313574465698076$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $1.0052432979893915$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.766276056274829$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 1$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $44.278974976250477864589701137$ |  | 
| Real period: | $\Omega$ | ≈ | $0.024518755139286124567165979503$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2\cdot2^{2}\cdot2 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L'(E,1)$ | ≈ | $8.6853227620901048771459790914 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 8.685322762 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.024519 \cdot 44.278975 \cdot 32}{2^2} \\ & \approx 8.685322762\end{aligned}$$
Modular invariants
Modular form 435600.2.a.jx
For more coefficients, see the Downloads section to the right.
| Modular degree: | 94371840 |  | 
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 (conditional*) |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{2}^{*}$ | additive | 1 | 4 | 10 | 0 | 
| $3$ | $2$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 | 
| $5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 | 
| $11$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 16.24.0.7 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 974 & 2409 \\ 2277 & 266 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 13 & 1776 \\ 924 & 985 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 2542 & 2627 \end{array}\right),\left(\begin{array}{rr} 2099 & 864 \\ 432 & 2075 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 2636 & 2637 \end{array}\right),\left(\begin{array}{rr} 2625 & 16 \\ 2624 & 17 \end{array}\right),\left(\begin{array}{rr} 1832 & 879 \\ 1041 & 2630 \end{array}\right),\left(\begin{array}{rr} 1759 & 0 \\ 0 & 2639 \end{array}\right)$.
The torsion field $K:=\Q(E[2640])$ is a degree-$38928384000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2640\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 27225 = 3^{2} \cdot 5^{2} \cdot 11^{2} \) | 
| $3$ | additive | $8$ | \( 48400 = 2^{4} \cdot 5^{2} \cdot 11^{2} \) | 
| $5$ | additive | $18$ | \( 17424 = 2^{4} \cdot 3^{2} \cdot 11^{2} \) | 
| $11$ | additive | $72$ | \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 435600jx
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 1320h4, its twist by $-660$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
