Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-17977575x+29288987750\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-17977575xz^2+29288987750z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-17977575x+29288987750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(10465, 993600)$ | $5.8085084917536158108949754324$ | $\infty$ |
| $(2365, 0)$ | $0$ | $2$ |
| $(2530, 0)$ | $0$ | $2$ |
Integral points
\( \left(-4895, 0\right) \), \( \left(2365, 0\right) \), \( \left(2530, 0\right) \), \((10465,\pm 993600)\)
Invariants
| Conductor: | $N$ | = | \( 435600 \) | = | $2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}$ |
|
| Discriminant: | $\Delta$ | = | $1265767756416900000000$ | = | $2^{8} \cdot 3^{10} \cdot 5^{8} \cdot 11^{8} $ |
|
| j-invariant: | $j$ | = | \( \frac{124386546256}{245025} \) | = | $2^{4} \cdot 3^{-4} \cdot 5^{-2} \cdot 7^{3} \cdot 11^{-2} \cdot 283^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9372211023163668777428852755$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.077849755007220300230910212863$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.919207014677319$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.753945611901739$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.8085084917536158108949754324$ |
|
| Real period: | $\Omega$ | ≈ | $0.15330417627245586861145288409$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2\cdot2^{2}\cdot2^{2}\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.1237488775988247469404603092 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.123748878 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.153304 \cdot 5.808508 \cdot 128}{4^2} \\ & \approx 7.123748878\end{aligned}$$
Modular invariants
Modular form 435600.2.a.ca
For more coefficients, see the Downloads section to the right.
| Modular degree: | 23592960 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_0^{*}$ | additive | 1 | 4 | 8 | 0 |
| $3$ | $4$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
| $5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
| $11$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 660 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 329 & 216 \\ 0 & 659 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 263 & 216 \\ 306 & 431 \end{array}\right),\left(\begin{array}{rr} 439 & 0 \\ 0 & 659 \end{array}\right),\left(\begin{array}{rr} 119 & 438 \\ 0 & 659 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 657 & 4 \\ 656 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[660])$ is a degree-$608256000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/660\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 27225 = 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
| $3$ | additive | $8$ | \( 48400 = 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
| $5$ | additive | $18$ | \( 17424 = 2^{4} \cdot 3^{2} \cdot 11^{2} \) |
| $11$ | additive | $72$ | \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 435600ca
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1320j2, its twist by $-660$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.