Properties

Label 435600.si
Number of curves $4$
Conductor $435600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("si1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 435600.si have rank \(1\).

Complex multiplication

The elliptic curves in class 435600.si do not have complex multiplication.

Modular form 435600.2.a.si

Copy content sage:E.q_eigenform(10)
 
\(q + 4 q^{7} - 6 q^{13} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 435600.si

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
435600.si1 435600si3 \([0, 0, 0, -858141075, 9528359805250]\) \(3382175663521924/59189241375\) \(1223056149523552278000000000\) \([2]\) \(283115520\) \(3.9942\) \(\Gamma_0(N)\)-optimal*
435600.si2 435600si2 \([0, 0, 0, -109453575, -214310632250]\) \(28071778927696/12404390625\) \(64079492668605562500000000\) \([2, 2]\) \(141557760\) \(3.6476\) \(\Gamma_0(N)\)-optimal*
435600.si3 435600si1 \([0, 0, 0, -92982450, -344943124625]\) \(275361373935616/148240125\) \(47861843289514031250000\) \([2]\) \(70778880\) \(3.3010\) \(\Gamma_0(N)\)-optimal*
435600.si4 435600si4 \([0, 0, 0, 375695925, -1596501557750]\) \(283811208976796/217529296875\) \(-4494913907730468750000000000\) \([2]\) \(283115520\) \(3.9942\)  
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 3 curves highlighted, and conditionally curve 435600.si1.