Show commands: SageMath
Rank
The elliptic curves in class 435600.jr have rank \(0\).
Complex multiplication
The elliptic curves in class 435600.jr do not have complex multiplication.Modular form 435600.2.a.jr
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 8 & 2 & 4 & 8 & 4 \\ 8 & 1 & 4 & 2 & 4 & 8 \\ 2 & 4 & 1 & 2 & 4 & 2 \\ 4 & 2 & 2 & 1 & 2 & 4 \\ 8 & 4 & 4 & 2 & 1 & 8 \\ 4 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 435600.jr
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
435600.jr1 | 435600jr5 | \([0, 0, 0, -1692315075, 26794986237250]\) | \(6484907238722641/283593750\) | \(23440143637350000000000000\) | \([2]\) | \(141557760\) | \(3.9462\) | \(\Gamma_0(N)\)-optimal* |
435600.jr2 | 435600jr4 | \([0, 0, 0, -511839075, -4457026862750]\) | \(179415687049201/1443420\) | \(119304364532094720000000\) | \([2]\) | \(70778880\) | \(3.5996\) | |
435600.jr3 | 435600jr3 | \([0, 0, 0, -111087075, 374247585250]\) | \(1834216913521/329422500\) | \(27228070849145760000000000\) | \([2, 2]\) | \(70778880\) | \(3.5996\) | \(\Gamma_0(N)\)-optimal* |
435600.jr4 | 435600jr2 | \([0, 0, 0, -32679075, -66483782750]\) | \(46694890801/3920400\) | \(324036545642726400000000\) | \([2, 2]\) | \(35389440\) | \(3.2531\) | \(\Gamma_0(N)\)-optimal* |
435600.jr5 | 435600jr1 | \([0, 0, 0, 2168925, -4767974750]\) | \(13651919/126720\) | \(-10473908546027520000000\) | \([2]\) | \(17694720\) | \(2.9065\) | \(\Gamma_0(N)\)-optimal* |
435600.jr6 | 435600jr6 | \([0, 0, 0, 215612925, 2160316485250]\) | \(13411719834479/32153832150\) | \(-2657641235348953814400000000\) | \([2]\) | \(141557760\) | \(3.9462\) |