Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+215612925x+2160316485250\)
|
(homogenize, simplify) |
\(y^2z=x^3+215612925xz^2+2160316485250z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+215612925x+2160316485250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-7810, 0)$ | $0$ | $2$ |
Integral points
\( \left(-7810, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 435600 \) | = | $2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}$ |
|
Discriminant: | $\Delta$ | = | $-2657641235348953814400000000$ | = | $-1 \cdot 2^{13} \cdot 3^{7} \cdot 5^{8} \cdot 11^{14} $ |
|
j-invariant: | $j$ | = | \( \frac{13411719834479}{32153832150} \) | = | $2^{-1} \cdot 3^{-1} \cdot 5^{-2} \cdot 11^{-8} \cdot 23^{3} \cdot 1033^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.9462085579926392471324008456$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.70008864048240363268619465008$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0027749166866642$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.416135187577175$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.031740693021772364373254082277$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2\cdot2^{2}\cdot2^{2}\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.0157021766967156599441306329 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.015702177 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.031741 \cdot 1.000000 \cdot 128}{2^2} \\ & \approx 1.015702177\end{aligned}$$
Modular invariants
Modular form 435600.2.a.jr
For more coefficients, see the Downloads section to the right.
Modular degree: | 141557760 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{5}^{*}$ | additive | -1 | 4 | 13 | 1 |
$3$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
$11$ | $4$ | $I_{8}^{*}$ | additive | -1 | 2 | 14 | 8 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.24.0.12 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 1439 & 2624 \\ 952 & 2511 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1744 & 2635 \\ 45 & 14 \end{array}\right),\left(\begin{array}{rr} 2297 & 2624 \\ 1906 & 2295 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 2542 & 2627 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 668 & 665 \\ 1323 & 1322 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 2636 & 2637 \end{array}\right),\left(\begin{array}{rr} 2625 & 16 \\ 2624 & 17 \end{array}\right),\left(\begin{array}{rr} 2099 & 2624 \\ 1312 & 315 \end{array}\right)$.
The torsion field $K:=\Q(E[2640])$ is a degree-$38928384000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2640\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 27225 = 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
$3$ | additive | $8$ | \( 48400 = 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
$5$ | additive | $18$ | \( 17424 = 2^{4} \cdot 3^{2} \cdot 11^{2} \) |
$11$ | additive | $72$ | \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 435600.jr
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 330.e6, its twist by $-660$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.