Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-16335x-1796850\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-16335xz^2-1796850z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-16335x-1796850\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(286, 4114)$ | $3.5298459749127718294023587040$ | $\infty$ |
| $(165, 0)$ | $0$ | $2$ |
Integral points
\( \left(165, 0\right) \), \((286,\pm 4114)\), \((705,\pm 18360)\)
Invariants
| Conductor: | $N$ | = | \( 435600 \) | = | $2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-1115828325216000$ | = | $-1 \cdot 2^{8} \cdot 3^{9} \cdot 5^{3} \cdot 11^{6} $ |
|
| j-invariant: | $j$ | = | \( -432 \) | = | $-1 \cdot 2^{4} \cdot 3^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.5757492211666503718922002651$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.3116152302154391352802166992$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.6989700043360189$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.259756108280758$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.5298459749127718294023587040$ |
|
| Real period: | $\Omega$ | ≈ | $0.19728361422100917769413817816$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $2.7855230862970932702572959531 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.785523086 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.197284 \cdot 3.529846 \cdot 16}{2^2} \\ & \approx 2.785523086\end{aligned}$$
Modular invariants
Modular form 435600.2.a.bc
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1966080 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_0^{*}$ | additive | 1 | 4 | 8 | 0 |
| $3$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
| $5$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 |
| $11$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.30 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120 = 2^{3} \cdot 3 \cdot 5 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 88 & 3 \\ 37 & 104 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 102 & 19 \\ 41 & 98 \end{array}\right),\left(\begin{array}{rr} 65 & 92 \\ 112 & 69 \end{array}\right),\left(\begin{array}{rr} 5 & 8 \\ 48 & 77 \end{array}\right),\left(\begin{array}{rr} 113 & 8 \\ 112 & 9 \end{array}\right),\left(\begin{array}{rr} 3 & 8 \\ 112 & 99 \end{array}\right),\left(\begin{array}{rr} 65 & 92 \\ 92 & 31 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[120])$ is a degree-$737280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 1815 = 3 \cdot 5 \cdot 11^{2} \) |
| $3$ | additive | $2$ | \( 48400 = 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
| $5$ | additive | $10$ | \( 17424 = 2^{4} \cdot 3^{2} \cdot 11^{2} \) |
| $11$ | additive | $62$ | \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 435600.bc
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 1800.b2, its twist by $44$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.