Properties

Label 435600.bc
Number of curves $2$
Conductor $435600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 435600.bc have rank \(1\).

Complex multiplication

The elliptic curves in class 435600.bc do not have complex multiplication.

Modular form 435600.2.a.bc

Copy content sage:E.q_eigenform(10)
 
\(q - 4 q^{7} - 4 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 435600.bc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
435600.bc1 435600bc2 \([0, 0, 0, -343035, -77264550]\) \(1000188\) \(4463313300864000\) \([2]\) \(3932160\) \(1.9223\) \(\Gamma_0(N)\)-optimal*
435600.bc2 435600bc1 \([0, 0, 0, -16335, -1796850]\) \(-432\) \(-1115828325216000\) \([2]\) \(1966080\) \(1.5757\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 435600.bc1.