Show commands:
SageMath
E = EllipticCurve("bz1")
E.isogeny_class()
Elliptic curves in class 43560.bz
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
43560.bz1 | 43560cd2 | \([0, 0, 0, -1947, -32186]\) | \(821516/25\) | \(24839654400\) | \([2]\) | \(27648\) | \(0.77072\) | |
43560.bz2 | 43560cd1 | \([0, 0, 0, 33, -1694]\) | \(16/5\) | \(-1241982720\) | \([2]\) | \(13824\) | \(0.42414\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 43560.bz have rank \(0\).
Complex multiplication
The elliptic curves in class 43560.bz do not have complex multiplication.Modular form 43560.2.a.bz
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.