Properties

Label 435344e
Number of curves $2$
Conductor $435344$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("e1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 435344e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
435344.e2 435344e1 \([0, 1, 0, -444864, -114354044]\) \(1969910093092/7889\) \(38992584909824\) \([2]\) \(2073600\) \(1.8193\) \(\Gamma_0(N)\)-optimal*
435344.e1 435344e2 \([0, 1, 0, -451624, -110706348]\) \(1030541881826/62236321\) \(615225004707203072\) \([2]\) \(4147200\) \(2.1658\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 435344e1.

Rank

sage: E.rank()
 

The elliptic curves in class 435344e have rank \(2\).

Complex multiplication

The elliptic curves in class 435344e do not have complex multiplication.

Modular form 435344.2.a.e

sage: E.q_eigenform(10)
 
\(q - 2q^{3} - 2q^{5} + q^{7} + q^{9} + 2q^{11} + 4q^{15} - 2q^{17} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.