Properties

Label 433200z
Number of curves $1$
Conductor $433200$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 433200z1 has rank \(1\).

Complex multiplication

The elliptic curves in class 433200z do not have complex multiplication.

Modular form 433200.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{7} + q^{9} - 5 q^{11} - 6 q^{13} + 3 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 433200z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
433200.z1 433200z1 \([0, -1, 0, -47727208, 153426652912]\) \(-442458985/118098\) \(-3209159724825628800000000\) \([]\) \(78796800\) \(3.4188\) \(\Gamma_0(N)\)-optimal