Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2+213592x+116595312\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z+213592xz^2+116595312z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+17300925x+85049885250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1362, 54150)$ | $1.8228269743404802736921497432$ | $\infty$ |
$(-348, 0)$ | $0$ | $2$ |
Integral points
\( \left(-348, 0\right) \), \((1362,\pm 54150)\)
Invariants
Conductor: | $N$ | = | \( 433200 \) | = | $2^{4} \cdot 3 \cdot 5^{2} \cdot 19^{2}$ |
|
Discriminant: | $\Delta$ | = | $-6503622589440000000$ | = | $-1 \cdot 2^{16} \cdot 3^{3} \cdot 5^{7} \cdot 19^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{357911}{2160} \) | = | $2^{-4} \cdot 3^{-3} \cdot 5^{-1} \cdot 71^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2917982866825672518965130857$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.67828733967764847482561241832$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9968917246282063$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.904228536935251$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.8228269743404802736921497432$ |
|
Real period: | $\Omega$ | ≈ | $0.17195131756456457096260153225$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{2}\cdot1\cdot2^{2}\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.0149999988811890909036146998 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.014999999 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.171951 \cdot 1.822827 \cdot 64}{2^2} \\ & \approx 5.014999999\end{aligned}$$
Modular invariants
Modular form 433200.2.a.n
For more coefficients, see the Downloads section to the right.
Modular degree: | 7962624 |
|
$ \Gamma_0(N) $-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{8}^{*}$ | additive | -1 | 4 | 16 | 4 |
$3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$5$ | $4$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
$19$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 2257 & 24 \\ 2256 & 25 \end{array}\right),\left(\begin{array}{rr} 1823 & 456 \\ 1938 & 113 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 856 & 2223 \\ 1121 & 1274 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 974 & 2171 \end{array}\right),\left(\begin{array}{rr} 968 & 1539 \\ 285 & 854 \end{array}\right),\left(\begin{array}{rr} 609 & 988 \\ 380 & 989 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right),\left(\begin{array}{rr} 359 & 0 \\ 0 & 2279 \end{array}\right)$.
The torsion field $K:=\Q(E[2280])$ is a degree-$11346739200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 27075 = 3 \cdot 5^{2} \cdot 19^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 144400 = 2^{4} \cdot 5^{2} \cdot 19^{2} \) |
$5$ | additive | $18$ | \( 17328 = 2^{4} \cdot 3 \cdot 19^{2} \) |
$19$ | additive | $182$ | \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 4, 6 and 12.
Its isogeny class 433200n
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 30a1, its twist by $380$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.