Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-9709633x-11642045363\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-9709633xz^2-11642045363z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-786480300x-8489410510500\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 433200 \) | = | $2^{4} \cdot 3 \cdot 5^{2} \cdot 19^{2}$ |
|
Discriminant: | $\Delta$ | = | $634570312500000000$ | = | $2^{8} \cdot 3^{2} \cdot 5^{17} \cdot 19^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{70107585212548096}{439453125} \) | = | $2^{10} \cdot 3^{-2} \cdot 5^{-11} \cdot 19 \cdot 15331^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6017615368529187408776772296$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.84420463040149827063097157670$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0399930925562786$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.613583390651229$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.085526167339472606993752170563$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 1\cdot2\cdot2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.68420933871578085595001736450 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.684209339 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.085526 \cdot 1.000000 \cdot 8}{1^2} \\ & \approx 0.684209339\end{aligned}$$
Modular invariants
Modular form 433200.2.a.bd
For more coefficients, see the Downloads section to the right.
Modular degree: | 15206400 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_0^{*}$ | additive | 1 | 4 | 8 | 0 |
$3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$5$ | $4$ | $I_{11}^{*}$ | additive | 1 | 2 | 17 | 11 |
$19$ | $1$ | $II$ | additive | -1 | 2 | 2 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 10.2.0.a.1, level \( 10 = 2 \cdot 5 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 9 & 2 \\ 8 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 2 \\ 7 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 9 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[10])$ is a degree-$1440$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 9025 = 5^{2} \cdot 19^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 144400 = 2^{4} \cdot 5^{2} \cdot 19^{2} \) |
$5$ | additive | $18$ | \( 17328 = 2^{4} \cdot 3 \cdot 19^{2} \) |
$19$ | additive | $74$ | \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 433200.bd consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 43320.j1, its twist by $-20$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.