Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2+5215098x+64416771324\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z+5215098xz^2+64416771324z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+6758766333x+3005327501394174\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-2977, 151551)$ | $2.1392775145174901202949570427$ | $\infty$ |
| $(9763, 1017871)$ | $2.8510682724077362220223272695$ | $\infty$ |
| $(-14309/4, 14309/8)$ | $0$ | $2$ |
Integral points
\( \left(-2977, 151551\right) \), \( \left(-2977, -148574\right) \), \( \left(-2095, 211527\right) \), \( \left(-2095, -209432\right) \), \( \left(9763, 1017871\right) \), \( \left(9763, -1027634\right) \), \( \left(25835, 4163622\right) \), \( \left(25835, -4189457\right) \), \( \left(69053, 18123036\right) \), \( \left(69053, -18192089\right) \)
Invariants
| Conductor: | $N$ | = | \( 431970 \) | = | $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $-1801549409612075265126600$ | = | $-1 \cdot 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7^{16} \cdot 11^{6} \cdot 17 $ |
|
| j-invariant: | $j$ | = | \( \frac{8854313460877886399}{1016927675429790600} \) | = | $2^{-3} \cdot 3^{-2} \cdot 5^{-2} \cdot 7^{-16} \cdot 17^{-1} \cdot 47^{3} \cdot 44017^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.3336065534892358940350210862$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.1346589170900506220040492972$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.036853983278124$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.87822243051925$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.0709354673288078889570553779$ |
|
| Real period: | $\Omega$ | ≈ | $0.064208284524429321463031132137$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 1\cdot2\cdot2\cdot2^{4}\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $10.419074153320578068149135068 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 10.419074153 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.064208 \cdot 5.070935 \cdot 128}{2^2} \\ & \approx 10.419074153\end{aligned}$$
Modular invariants
Modular form 431970.2.a.y
For more coefficients, see the Downloads section to the right.
| Modular degree: | 94371840 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 6 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $5$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $7$ | $16$ | $I_{16}$ | split multiplicative | -1 | 1 | 16 | 16 |
| $11$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $17$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 16.24.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 44880 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \cdot 17 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 10088 & 4081 \\ 10879 & 36730 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 22958 & 15301 \\ 13849 & 14290 \end{array}\right),\left(\begin{array}{rr} 27556 & 15301 \\ 42999 & 14290 \end{array}\right),\left(\begin{array}{rr} 4079 & 0 \\ 0 & 44879 \end{array}\right),\left(\begin{array}{rr} 31021 & 20416 \\ 23408 & 11925 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 44782 & 44867 \end{array}\right),\left(\begin{array}{rr} 34013 & 20416 \\ 2464 & 11925 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 44876 & 44877 \end{array}\right),\left(\begin{array}{rr} 44865 & 16 \\ 44864 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[44880])$ is a degree-$3049493889024000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/44880\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 2057 = 11^{2} \cdot 17 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 71995 = 5 \cdot 7 \cdot 11^{2} \cdot 17 \) |
| $5$ | split multiplicative | $6$ | \( 86394 = 2 \cdot 3 \cdot 7 \cdot 11^{2} \cdot 17 \) |
| $7$ | split multiplicative | $8$ | \( 61710 = 2 \cdot 3 \cdot 5 \cdot 11^{2} \cdot 17 \) |
| $11$ | additive | $62$ | \( 3570 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \) |
| $17$ | nonsplit multiplicative | $18$ | \( 25410 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 431970.y
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 3570.t6, its twist by $-11$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.