Properties

Label 431970.bz1
Conductor $431970$
Discriminant $1.327\times 10^{23}$
j-invariant \( \frac{66464620505913166201729}{74880071980801920} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2+xy+y=x^3-102111419x-396776314618\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z+xyz+yz^2=x^3-102111419xz^2-396776314618z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-132336398403x-18511598725610562\) Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, -102111419, -396776314618])
 
gp: E = ellinit([1, 0, 1, -102111419, -396776314618])
 
magma: E := EllipticCurve([1, 0, 1, -102111419, -396776314618]);
 
oscar: E = EllipticCurve([1, 0, 1, -102111419, -396776314618])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroup(E);
 

Infinite order Mordell-Weil generator and height

$P$ =  \(\left(-5910, 19861\right)\) Copy content Toggle raw display
$\hat{h}(P)$ ≈  $3.5830321203602953832342246948$

sage: E.gens()
 
magma: Generators(E);
 
gp: E.gen
 

Torsion generators

\( \left(-\frac{23929}{4}, \frac{23925}{8}\right) \) Copy content Toggle raw display

comment: Torsion subgroup
 
sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 
oscar: torsion_structure(E)
 

Integral points

\( \left(-5910, 19861\right) \), \( \left(-5910, -13952\right) \), \( \left(66648, 16962154\right) \), \( \left(66648, -17028803\right) \) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: \( 431970 \)  =  $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 17$
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: $132654615198381430197120 $  =  $2^{7} \cdot 3^{5} \cdot 5 \cdot 7^{8} \cdot 11^{6} \cdot 17^{4} $
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: \( \frac{66464620505913166201729}{74880071980801920} \)  =  $2^{-7} \cdot 3^{-5} \cdot 5^{-1} \cdot 7^{-8} \cdot 17^{-4} \cdot 491^{3} \cdot 82499^{3}$
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $3.3506558855714931926636728603\dots$
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: $2.1517082491723079206327010713\dots$
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
$abc$ quality: $1.0111434690046417\dots$
Szpiro ratio: $5.158581504486995\dots$

BSD invariants

Analytic rank: $1$
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Regulator: $3.5830321203602953832342246948\dots$
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: $0.047496363016381653545974519383\dots$
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $ 40 $  = $ 1\cdot5\cdot1\cdot2\cdot2\cdot2 $
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: $2$
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Analytic order of Ш: $4$ = $2^2$ ( rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Special value: $ L'(E,1) $ ≈ $ 6.8072397715195308459663073568 $
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

BSD formula

$\displaystyle 6.807239772 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{4 \cdot 0.047496 \cdot 3.583032 \cdot 40}{2^2} \approx 6.807239772$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 431970.2.a.bz

\( q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - q^{7} - q^{8} + q^{9} + q^{10} + q^{12} + 6 q^{13} + q^{14} - q^{15} + q^{16} - q^{17} - q^{18} + 4 q^{19} + O(q^{20}) \) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 91750400
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: no
Manin constant: 1 (conditional*)
comment: Manin constant
 
magma: ManinConstant(E);
 
* The Manin constant is correct provided that curve 431970.bz4 is optimal.

Local data

This elliptic curve is not semistable. There are 6 primes of bad reduction:

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $1$ $I_{7}$ Non-split multiplicative 1 1 7 7
$3$ $5$ $I_{5}$ Split multiplicative -1 1 5 5
$5$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1
$7$ $2$ $I_{8}$ Non-split multiplicative 1 1 8 8
$11$ $2$ $I_0^{*}$ Additive -1 2 6 0
$17$ $2$ $I_{4}$ Non-split multiplicative 1 1 4 4

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 4.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[14521, 10208, 7084, 18393], [7, 6, 22434, 22435], [10968, 1793, 4873, 13080], [1, 0, 8, 1], [19724, 4081, 19063, 20406], [8416, 7403, 19129, 21198], [22433, 8, 22432, 9], [4079, 0, 0, 22439], [3268, 4081, 8591, 20406], [1, 8, 0, 1], [1, 4, 4, 17]]
 
GL(2,Integers(22440)).subgroup(gens)
 
Gens := [[14521, 10208, 7084, 18393], [7, 6, 22434, 22435], [10968, 1793, 4873, 13080], [1, 0, 8, 1], [19724, 4081, 19063, 20406], [8416, 7403, 19129, 21198], [22433, 8, 22432, 9], [4079, 0, 0, 22439], [3268, 4081, 8591, 20406], [1, 8, 0, 1], [1, 4, 4, 17]];
 
sub<GL(2,Integers(22440))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 22440 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 17 \), index $48$, genus $0$, and generators

$\left(\begin{array}{rr} 14521 & 10208 \\ 7084 & 18393 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 22434 & 22435 \end{array}\right),\left(\begin{array}{rr} 10968 & 1793 \\ 4873 & 13080 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 19724 & 4081 \\ 19063 & 20406 \end{array}\right),\left(\begin{array}{rr} 8416 & 7403 \\ 19129 & 21198 \end{array}\right),\left(\begin{array}{rr} 22433 & 8 \\ 22432 & 9 \end{array}\right),\left(\begin{array}{rr} 4079 & 0 \\ 0 & 22439 \end{array}\right),\left(\begin{array}{rr} 3268 & 4081 \\ 8591 & 20406 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[22440])$ is a degree-$762373472256000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/22440\Z)$.

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 431970.bz consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 3570.v1, its twist by $-11$.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

$p$-adic regulators

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.