Properties

Label 43095.n
Number of curves $4$
Conductor $43095$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 43095.n have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(13\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 43095.n do not have complex multiplication.

Modular form 43095.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} - q^{4} + q^{5} - q^{6} + 4 q^{7} - 3 q^{8} + q^{9} + q^{10} + 4 q^{11} + q^{12} + 4 q^{14} - q^{15} - q^{16} - q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 43095.n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
43095.n1 43095f4 \([1, 1, 0, -176777, -28678554]\) \(126574061279329/16286595\) \(78612283325355\) \([2]\) \(301056\) \(1.6874\)  
43095.n2 43095f2 \([1, 1, 0, -12002, -370209]\) \(39616946929/10989225\) \(53042890133025\) \([2, 2]\) \(150528\) \(1.3409\)  
43095.n3 43095f1 \([1, 1, 0, -4397, 105864]\) \(1948441249/89505\) \(432023539545\) \([2]\) \(75264\) \(0.99428\) \(\Gamma_0(N)\)-optimal
43095.n4 43095f3 \([1, 1, 0, 31093, -2378436]\) \(688699320191/910381875\) \(-4394239427686875\) \([2]\) \(301056\) \(1.6874\)