Show commands: SageMath
Rank
The elliptic curves in class 4290p have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 4290p do not have complex multiplication.Modular form 4290.2.a.p
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 4290p
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
4290.o2 | 4290p1 | \([1, 0, 1, -668, 8858]\) | \(-32894113444921/15289560000\) | \(-15289560000\) | \([2]\) | \(3840\) | \(0.66042\) | \(\Gamma_0(N)\)-optimal |
4290.o1 | 4290p2 | \([1, 0, 1, -11668, 484058]\) | \(175654575624148921/21954418200\) | \(21954418200\) | \([2]\) | \(7680\) | \(1.0070\) |