Properties

Label 426888dk
Number of curves $2$
Conductor $426888$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 426888dk have rank \(0\).

Complex multiplication

The elliptic curves in class 426888dk do not have complex multiplication.

Modular form 426888.2.a.dk

Copy content sage:E.q_eigenform(10)
 
\(q - 6 q^{13} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 426888dk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
426888.dk2 426888dk1 \([0, 0, 0, 4535685, -1060069626]\) \(66325500/41503\) \(-6457305390866243730432\) \([2]\) \(17694720\) \(2.8740\) \(\Gamma_0(N)\)-optimal*
426888.dk1 426888dk2 \([0, 0, 0, -18943155, -8653126482]\) \(2415899250/1294139\) \(402701045284931199916032\) \([2]\) \(35389440\) \(3.2206\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 426888dk1.