Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-37989003x+90122728358\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-37989003xz^2+90122728358z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-37989003x+90122728358\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(3562, 0)$ | $0$ | $2$ |
Integral points
\( \left(3562, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 425880 \) | = | $2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $10121983396954490880$ | = | $2^{11} \cdot 3^{8} \cdot 5 \cdot 7^{4} \cdot 13^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{841356017734178}{1404585} \) | = | $2 \cdot 3^{-2} \cdot 5^{-1} \cdot 7^{-4} \cdot 13^{-1} \cdot 74929^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9089553193308524624026714195$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.44178958075274604837917563559$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.936065372896473$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.935384568006071$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.19560879627093514202506278425$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 1\cdot2^{2}\cdot1\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.5648703701674811362005022740 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.564870370 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.195609 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 1.564870370\end{aligned}$$
Modular invariants
Modular form 425880.2.a.cn
For more coefficients, see the Downloads section to the right.
| Modular degree: | 27525120 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $II^{*}$ | additive | -1 | 3 | 11 | 0 |
| $3$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
| $5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $7$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $13$ | $2$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 10920 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 4096 & 2283 \\ 8649 & 5038 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 10913 & 8 \\ 10912 & 9 \end{array}\right),\left(\begin{array}{rr} 7279 & 0 \\ 0 & 10919 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 5036 & 3639 \\ 8937 & 7274 \end{array}\right),\left(\begin{array}{rr} 4099 & 456 \\ 2298 & 7741 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 10914 & 10915 \end{array}\right),\left(\begin{array}{rr} 2188 & 7281 \\ 8031 & 3646 \end{array}\right),\left(\begin{array}{rr} 7801 & 3648 \\ 5724 & 3673 \end{array}\right)$.
The torsion field $K:=\Q(E[10920])$ is a degree-$38954430627840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/10920\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 7605 = 3^{2} \cdot 5 \cdot 13^{2} \) |
| $3$ | additive | $8$ | \( 47320 = 2^{3} \cdot 5 \cdot 7 \cdot 13^{2} \) |
| $5$ | nonsplit multiplicative | $6$ | \( 85176 = 2^{3} \cdot 3^{2} \cdot 7 \cdot 13^{2} \) |
| $7$ | split multiplicative | $8$ | \( 60840 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) |
| $13$ | additive | $98$ | \( 2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 425880.cn
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 10920.c1, its twist by $-39$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.