Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-104641x+13671105\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-104641xz^2+13671105z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-8475948x+9940807728\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 42560 \) | = | $2^{6} \cdot 5 \cdot 7 \cdot 19$ |
|
| Discriminant: | $\Delta$ | = | $-6997575467008000$ | = | $-1 \cdot 2^{33} \cdot 5^{3} \cdot 7^{3} \cdot 19 $ |
|
| j-invariant: | $j$ | = | \( -\frac{483385461758641}{26693632000} \) | = | $-1 \cdot 2^{-15} \cdot 5^{-3} \cdot 7^{-3} \cdot 13^{3} \cdot 19^{-1} \cdot 6037^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7982146285070387173482747257$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.75849385766712075322242654351$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9285015318020364$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.351352069564666$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.41454150894316510870225386888$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 2^{2}\cdot1\cdot3\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $4.9744981073179813044270464266 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 4.974498107 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.414542 \cdot 1.000000 \cdot 12}{1^2} \\ & \approx 4.974498107\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 414720 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{23}^{*}$ | additive | 1 | 6 | 33 | 15 |
| $5$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $7$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 15960 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 19 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 13681 & 6 \\ 9123 & 19 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 8646 & 7321 \\ 11305 & 6651 \end{array}\right),\left(\begin{array}{rr} 7979 & 15954 \\ 7977 & 15941 \end{array}\right),\left(\begin{array}{rr} 15955 & 6 \\ 15954 & 7 \end{array}\right),\left(\begin{array}{rr} 9577 & 6 \\ 12771 & 19 \end{array}\right),\left(\begin{array}{rr} 3991 & 6 \\ 11973 & 19 \end{array}\right),\left(\begin{array}{rr} 4201 & 6 \\ 12603 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[15960])$ is a degree-$549000629452800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/15960\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 665 = 5 \cdot 7 \cdot 19 \) |
| $3$ | good | $2$ | \( 1216 = 2^{6} \cdot 19 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 8512 = 2^{6} \cdot 7 \cdot 19 \) |
| $7$ | split multiplicative | $8$ | \( 6080 = 2^{6} \cdot 5 \cdot 19 \) |
| $19$ | nonsplit multiplicative | $20$ | \( 2240 = 2^{6} \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 42560q
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 1330j1, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{2}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.5320.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.150568768000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.1801557504.3 | \(\Z/3\Z\) | not in database |
| $6$ | 6.2.905676800.1 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.6.13798799412154171756904448000000000000.1 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.248336084206088260765925506333802496000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | nonsplit | split | ord | ord | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.