Show commands:
SageMath
E = EllipticCurve("ep1")
E.isogeny_class()
Elliptic curves in class 424830.ep
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
424830.ep1 | 424830ep2 | \([1, 0, 1, -765366943, -7770770423944]\) | \(17460273607244690041/918397653311250\) | \(2608029705455218621699211250\) | \([2]\) | \(424673280\) | \(4.0177\) | \(\Gamma_0(N)\)-optimal* |
424830.ep2 | 424830ep1 | \([1, 0, 1, 31189307, -482917981444]\) | \(1181569139409959/36161310937500\) | \(-102689475275957179935937500\) | \([2]\) | \(212336640\) | \(3.6712\) | \(\Gamma_0(N)\)-optimal* |
Rank
sage: E.rank()
The elliptic curves in class 424830.ep have rank \(0\).
Complex multiplication
The elliptic curves in class 424830.ep do not have complex multiplication.Modular form 424830.2.a.ep
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.