Properties

Label 424830.ep
Number of curves $2$
Conductor $424830$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ep1")
 
E.isogeny_class()
 

Elliptic curves in class 424830.ep

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
424830.ep1 424830ep2 \([1, 0, 1, -765366943, -7770770423944]\) \(17460273607244690041/918397653311250\) \(2608029705455218621699211250\) \([2]\) \(424673280\) \(4.0177\) \(\Gamma_0(N)\)-optimal*
424830.ep2 424830ep1 \([1, 0, 1, 31189307, -482917981444]\) \(1181569139409959/36161310937500\) \(-102689475275957179935937500\) \([2]\) \(212336640\) \(3.6712\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 424830.ep1.

Rank

sage: E.rank()
 

The elliptic curves in class 424830.ep have rank \(0\).

Complex multiplication

The elliptic curves in class 424830.ep do not have complex multiplication.

Modular form 424830.2.a.ep

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - q^{8} + q^{9} - q^{10} + 6 q^{11} + q^{12} + q^{15} + q^{16} - q^{18} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.