Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2+218830x-171054893\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z+218830xz^2-171054893z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+17725203x-124645841361\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(4769, 330625)$ | $0.32877919701833573450662093707$ | $\infty$ |
| $(11141/4, 1187605/8)$ | $4.0446309092297057733001276425$ | $\infty$ |
Integral points
\((537,\pm 10051)\), \((1649,\pm 68345)\), \((4769,\pm 330625)\), \((50769,\pm 11439625)\)
Invariants
| Conductor: | $N$ | = | \( 42320 \) | = | $2^{4} \cdot 5 \cdot 23^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-13300099402343750000$ | = | $-1 \cdot 2^{4} \cdot 5^{12} \cdot 23^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{489277573376}{5615234375} \) | = | $2^{8} \cdot 5^{-12} \cdot 17^{3} \cdot 23^{-1} \cdot 73^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3504726080661965287417244262$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.55167643991497324686593730314$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.147813072895248$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.82842484686353$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.3089650310637995081866477073$ |
|
| Real period: | $\Omega$ | ≈ | $0.11009439970584753890088252065$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 48 $ = $ 1\cdot( 2^{2} \cdot 3 )\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $6.9172665278839239933122246195 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.917266528 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.110094 \cdot 1.308965 \cdot 48}{1^2} \\ & \approx 6.917266528\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 912384 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $II$ | additive | -1 | 4 | 4 | 0 |
| $5$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
| $23$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 276 = 2^{2} \cdot 3 \cdot 23 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 137 & 0 \\ 0 & 275 \end{array}\right),\left(\begin{array}{rr} 143 & 270 \\ 144 & 269 \end{array}\right),\left(\begin{array}{rr} 179 & 270 \\ 261 & 257 \end{array}\right),\left(\begin{array}{rr} 250 & 159 \\ 197 & 269 \end{array}\right),\left(\begin{array}{rr} 271 & 6 \\ 270 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[276])$ is a degree-$76944384$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/276\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 529 = 23^{2} \) |
| $3$ | good | $2$ | \( 8464 = 2^{4} \cdot 23^{2} \) |
| $5$ | split multiplicative | $6$ | \( 8464 = 2^{4} \cdot 23^{2} \) |
| $23$ | additive | $288$ | \( 80 = 2^{4} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 42320y
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 460c2, its twist by $92$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-69}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.23.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.12167.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.2.14829334272.1 | \(\Z/3\Z\) | not in database |
| $6$ | 6.0.21024576.1 | \(\Z/6\Z\) | not in database |
| $12$ | 12.2.892554561978368.12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | 12.0.442032795979776.3 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.0.15743297183435665133093509853270016000000000000.2 | \(\Z/9\Z\) | not in database |
| $18$ | 18.2.3261106368237178180086056091648.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | split | ord | ord | ord | ss | ord | add | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 2 | 3 | 2 | 2 | 2 | 2,2 | 2 | - | 2 | 2 | 2 | 2 | 2 | 2 |
| $\mu$-invariant(s) | - | 1 | 0 | 0 | 0 | 0 | 0,0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.