Properties

Label 422730s4
Conductor $422730$
Discriminant $-9.154\times 10^{24}$
j-invariant \( -\frac{3010886403566634803117601}{12557142177117000158080} \)
CM no
Rank $0$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2+xy=x^3-x^2-27074850x+155346706196\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z+xyz=x^3-x^2z-27074850xz^2+155346706196z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-433197603x+9941755998942\) Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, -27074850, 155346706196])
 
gp: E = ellinit([1, -1, 0, -27074850, 155346706196])
 
magma: E := EllipticCurve([1, -1, 0, -27074850, 155346706196]);
 
oscar: E = EllipticCurve([1, -1, 0, -27074850, 155346706196])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z/{2}\Z\)

magma: MordellWeilGroup(E);
 

Torsion generators

\( \left(-\frac{28061}{4}, \frac{28061}{8}\right) \) Copy content Toggle raw display

comment: Torsion subgroup
 
sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 
oscar: torsion_structure(E)
 

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: \( 422730 \)  =  $2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 61$
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: $-9154156647118293115240320 $  =  $-1 \cdot 2^{7} \cdot 3^{6} \cdot 5 \cdot 7 \cdot 11^{16} \cdot 61 $
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: \( -\frac{3010886403566634803117601}{12557142177117000158080} \)  =  $-1 \cdot 2^{-7} \cdot 3^{3} \cdot 5^{-1} \cdot 7^{-1} \cdot 11^{-16} \cdot 61^{-1} \cdot 48133067^{3}$
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $3.4748469011179621582379826760\dots$
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: $2.9255407567839073125403600575\dots$
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
$abc$ quality: $1.0144868190142529\dots$
Szpiro ratio: $5.022267505246248\dots$

BSD invariants

Analytic rank: $0$
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Regulator: $1$
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: $0.063635546189962507377375577610\dots$
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $ 4 $  = $ 1\cdot2\cdot1\cdot1\cdot2\cdot1 $
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: $2$
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Analytic order of Ш: $16$ = $4^2$ ( exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Special value: $ L(E,1) $ ≈ $ 1.0181687390394001180380092418 $
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

BSD formula

$\displaystyle 1.018168739 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{16 \cdot 0.063636 \cdot 1.000000 \cdot 4}{2^2} \approx 1.018168739$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 422730.2.a.s

\( q - q^{2} + q^{4} - q^{5} + q^{7} - q^{8} + q^{10} - q^{11} + 6 q^{13} - q^{14} + q^{16} - 2 q^{17} + 4 q^{19} + O(q^{20}) \) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 142213120
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: no
Manin constant: 1 (conditional*)
comment: Manin constant
 
magma: ManinConstant(E);
 
* The Manin constant is correct provided that curve 422730s1 is optimal.

Local data

This elliptic curve is not semistable. There are 6 primes of bad reduction:

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $1$ $I_{7}$ Non-split multiplicative 1 1 7 7
$3$ $2$ $I_0^{*}$ Additive -1 2 6 0
$5$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1
$7$ $1$ $I_{1}$ Split multiplicative -1 1 1 1
$11$ $2$ $I_{16}$ Non-split multiplicative 1 1 16 16
$61$ $1$ $I_{1}$ Split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 4.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[23488, 49113, 27747, 10654], [34159, 0, 0, 51239], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [21964, 34161, 2463, 17086], [44416, 3, 17085, 34162], [7, 6, 51234, 51235], [27763, 27756, 10722, 36301], [19048, 3, 20445, 34162], [51233, 8, 51232, 9]]
 
GL(2,Integers(51240)).subgroup(gens)
 
Gens := [[23488, 49113, 27747, 10654], [34159, 0, 0, 51239], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [21964, 34161, 2463, 17086], [44416, 3, 17085, 34162], [7, 6, 51234, 51235], [27763, 27756, 10722, 36301], [19048, 3, 20445, 34162], [51233, 8, 51232, 9]];
 
sub<GL(2,Integers(51240))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 51240 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 61 \), index $48$, genus $0$, and generators

$\left(\begin{array}{rr} 23488 & 49113 \\ 27747 & 10654 \end{array}\right),\left(\begin{array}{rr} 34159 & 0 \\ 0 & 51239 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 21964 & 34161 \\ 2463 & 17086 \end{array}\right),\left(\begin{array}{rr} 44416 & 3 \\ 17085 & 34162 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 51234 & 51235 \end{array}\right),\left(\begin{array}{rr} 27763 & 27756 \\ 10722 & 36301 \end{array}\right),\left(\begin{array}{rr} 19048 & 3 \\ 20445 & 34162 \end{array}\right),\left(\begin{array}{rr} 51233 & 8 \\ 51232 & 9 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[51240])$ is a degree-$20237040746496000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/51240\Z)$.

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 422730s consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 46970p3, its twist by $-3$.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

$p$-adic regulators

All $p$-adic regulators are identically $1$ since the rank is $0$.