Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-737611955x-7710661607410\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-737611955xz^2-7710661607410z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-955945093059x-359745760120030146\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-391369/25, 797256/125)$ | $5.6504104318222471786998889585$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 422142 \) | = | $2 \cdot 3 \cdot 7 \cdot 19 \cdot 23^{2}$ |
|
| Discriminant: | $\Delta$ | = | $219034980728875265795904$ | = | $2^{6} \cdot 3 \cdot 7^{9} \cdot 19^{2} \cdot 23^{8} $ |
|
| j-invariant: | $j$ | = | \( \frac{566741302835994084073}{2796989208384} \) | = | $2^{-6} \cdot 3^{-1} \cdot 7^{-9} \cdot 11^{3} \cdot 19^{-2} \cdot 23 \cdot 127^{3} \cdot 2083^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.6780465538098359232226456477$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.5877170765237361293514770932$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9833720140751464$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.625711610129777$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.6504104318222471786998889585$ |
|
| Real period: | $\Omega$ | ≈ | $0.028969613201154825125547331629$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 36 $ = $ 2\cdot1\cdot3^{2}\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $5.8928473669557854828898050736 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.892847367 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.028970 \cdot 5.650410 \cdot 36}{1^2} \\ & \approx 5.892847367\end{aligned}$$
Modular invariants
Modular form 422142.2.a.y
For more coefficients, see the Downloads section to the right.
| Modular degree: | 145939968 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
| $3$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $7$ | $9$ | $I_{9}$ | split multiplicative | -1 | 1 | 9 | 9 |
| $19$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $23$ | $1$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B.1.2 | 3.8.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 42.16.0-42.b.1.3, level \( 42 = 2 \cdot 3 \cdot 7 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 37 & 6 \\ 36 & 7 \end{array}\right),\left(\begin{array}{rr} 39 & 40 \\ 32 & 35 \end{array}\right),\left(\begin{array}{rr} 31 & 6 \\ 9 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 38 & 9 \\ 1 & 22 \end{array}\right)$.
The torsion field $K:=\Q(E[42])$ is a degree-$36288$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/42\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 11109 = 3 \cdot 7 \cdot 23^{2} \) |
| $3$ | split multiplicative | $4$ | \( 10051 = 19 \cdot 23^{2} \) |
| $7$ | split multiplicative | $8$ | \( 60306 = 2 \cdot 3 \cdot 19 \cdot 23^{2} \) |
| $19$ | split multiplicative | $20$ | \( 22218 = 2 \cdot 3 \cdot 7 \cdot 23^{2} \) |
| $23$ | additive | $200$ | \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 422142y
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 422142bz2, its twist by $-23$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.