Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-15606608x-23725474788\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-15606608xz^2-23725474788z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1264135275x-17299663526250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-2283, 0)$ | $0$ | $2$ |
| $(4562, 0)$ | $0$ | $2$ |
Integral points
\( \left(-2283, 0\right) \), \( \left(-2278, 0\right) \), \( \left(4562, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 421800 \) | = | $2^{3} \cdot 3 \cdot 5^{2} \cdot 19 \cdot 37$ |
|
| Discriminant: | $\Delta$ | = | $876837468816000000$ | = | $2^{10} \cdot 3^{4} \cdot 5^{6} \cdot 19^{2} \cdot 37^{4} $ |
|
| j-invariant: | $j$ | = | \( \frac{26274189238602645028}{54802341801} \) | = | $2^{2} \cdot 3^{-4} \cdot 13^{3} \cdot 19^{-2} \cdot 37^{-4} \cdot 144061^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6920938338234393284634511977$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.3097522271397680499820447632$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9746787246431069$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.733003535016359$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.075957817246279600850802073747$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot2\cdot2^{2}\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.2153250759404736136128331799 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 1.215325076 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.075958 \cdot 1.000000 \cdot 64}{4^2} \\ & \approx 1.215325076\end{aligned}$$
Modular invariants
Modular form 421800.2.a.r
For more coefficients, see the Downloads section to the right.
| Modular degree: | 13631488 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $III^{*}$ | additive | 1 | 3 | 10 | 0 |
| $3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $5$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $19$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $37$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 8.24.0.15 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 28120 = 2^{3} \cdot 5 \cdot 19 \cdot 37 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 28113 & 8 \\ 28112 & 9 \end{array}\right),\left(\begin{array}{rr} 5623 & 0 \\ 0 & 28119 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 11251 & 23910 \\ 18270 & 16851 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 28116 & 28117 \end{array}\right),\left(\begin{array}{rr} 9881 & 22500 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 15470 \\ 22500 & 12671 \end{array}\right),\left(\begin{array}{rr} 14511 & 11250 \\ 24550 & 22491 \end{array}\right)$.
The torsion field $K:=\Q(E[28120])$ is a degree-$861489827020800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/28120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 25 = 5^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 140600 = 2^{3} \cdot 5^{2} \cdot 19 \cdot 37 \) |
| $5$ | additive | $14$ | \( 16872 = 2^{3} \cdot 3 \cdot 19 \cdot 37 \) |
| $19$ | split multiplicative | $20$ | \( 22200 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 37 \) |
| $37$ | nonsplit multiplicative | $38$ | \( 11400 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 19 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 421800r
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 16872e3, its twist by $5$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.