Properties

Label 4200.q
Number of curves $4$
Conductor $4200$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 4200.q have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4200.q do not have complex multiplication.

Modular form 4200.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} - 4 q^{11} - 2 q^{13} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 4200.q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4200.q1 4200l4 \([0, 1, 0, -11408, 464688]\) \(10262905636/13125\) \(210000000000\) \([2]\) \(6144\) \(1.0804\)  
4200.q2 4200l3 \([0, 1, 0, -8408, -297312]\) \(4108974916/36015\) \(576240000000\) \([2]\) \(6144\) \(1.0804\)  
4200.q3 4200l2 \([0, 1, 0, -908, 2688]\) \(20720464/11025\) \(44100000000\) \([2, 2]\) \(3072\) \(0.73386\)  
4200.q4 4200l1 \([0, 1, 0, 217, 438]\) \(4499456/2835\) \(-708750000\) \([4]\) \(1536\) \(0.38728\) \(\Gamma_0(N)\)-optimal