Properties

Label 4200.p
Number of curves $1$
Conductor $4200$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 4200.p1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4200.p do not have complex multiplication.

Modular form 4200.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} - 5 q^{11} + 4 q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 4200.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4200.p1 4200be1 \([0, 1, 0, -308, -2187]\) \(-324179200/63\) \(-630000\) \([]\) \(1344\) \(0.11274\) \(\Gamma_0(N)\)-optimal