Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2+xy=x^3-x^2-515170917x-5301308977259\) | (homogenize, simplify) | 
| \(y^2z+xyz=x^3-x^2z-515170917xz^2-5301308977259z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-8242734675x-339292017279250\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(26714, -13357)$ | $0$ | $2$ | 
Integral points
      
    \( \left(26714, -13357\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 418950 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19$ |  | 
| Discriminant: | $\Delta$ | = | $-3390942190360854528000000000$ | = | $-1 \cdot 2^{28} \cdot 3^{10} \cdot 5^{9} \cdot 7^{8} \cdot 19 $ |  | 
| j-invariant: | $j$ | = | \( -\frac{11283450590382195961}{2530373271552000} \) | = | $-1 \cdot 2^{-28} \cdot 3^{-4} \cdot 5^{-3} \cdot 7^{-2} \cdot 19^{-1} \cdot 2242921^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.0027800723633254474723817951$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.6757998972845637619217031383$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $0.9818688900618688$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.571133264339794$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 0$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |  | 
| Real period: | $\Omega$ | ≈ | $0.015657622724063005748169581392$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot2^{2}\cdot2^{2}\cdot2\cdot1 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L(E,1)$ | ≈ | $2.2546976722650728277364197204 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $9$ = $3^2$ (exact) |  | 
BSD formula
$$\begin{aligned} 2.254697672 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{9 \cdot 0.015658 \cdot 1.000000 \cdot 64}{2^2} \\ & \approx 2.254697672\end{aligned}$$
Modular invariants
Modular form 418950.2.a.hx
For more coefficients, see the Downloads section to the right.
| Modular degree: | 247726080 |  | 
| $ \Gamma_0(N) $-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{28}$ | nonsplit multiplicative | 1 | 1 | 28 | 28 | 
| $3$ | $4$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 | 
| $5$ | $4$ | $I_{3}^{*}$ | additive | 1 | 2 | 9 | 3 | 
| $7$ | $2$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 | 
| $19$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 4.6.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 15960 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 19 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 7 & 6 \\ 15954 & 15955 \end{array}\right),\left(\begin{array}{rr} 2003 & 13398 \\ 11690 & 15107 \end{array}\right),\left(\begin{array}{rr} 2279 & 0 \\ 0 & 15959 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 15953 & 8 \\ 15952 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 10639 & 6832 \\ 6076 & 11367 \end{array}\right),\left(\begin{array}{rr} 1688 & 11403 \\ 2765 & 9122 \end{array}\right),\left(\begin{array}{rr} 14132 & 6839 \\ 889 & 2274 \end{array}\right),\left(\begin{array}{rr} 5993 & 1428 \\ 3710 & 7127 \end{array}\right)$.
The torsion field $K:=\Q(E[15960])$ is a degree-$183000209817600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/15960\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 209475 = 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) | 
| $3$ | additive | $8$ | \( 46550 = 2 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) | 
| $5$ | additive | $18$ | \( 16758 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 19 \) | 
| $7$ | additive | $32$ | \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \) | 
| $19$ | split multiplicative | $20$ | \( 22050 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 418950hx
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 3990g1, its twist by $105$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
