Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-75567x+2855341\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-75567xz^2+2855341z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1209075x+181532750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(30, 769)$ | $1.9249162939533284106726547322$ | $\infty$ |
$(254, -127)$ | $0$ | $2$ |
Integral points
\( \left(-271, 1973\right) \), \( \left(-271, -1702\right) \), \( \left(30, 769\right) \), \( \left(30, -799\right) \), \( \left(254, -127\right) \), \( \left(2103, 94559\right) \), \( \left(2103, -96662\right) \)
Invariants
Conductor: | $N$ | = | \( 418950 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $24141574800000000$ | = | $2^{10} \cdot 3^{3} \cdot 5^{8} \cdot 7^{6} \cdot 19 $ |
|
j-invariant: | $j$ | = | \( \frac{961504803}{486400} \) | = | $2^{-10} \cdot 3^{3} \cdot 5^{-2} \cdot 7^{3} \cdot 19^{-1} \cdot 47^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8361068644875078598348036958$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.21622023842422640286706365176$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9298072147700007$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.5002055804477195$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.9249162939533284106726547322$ |
|
Real period: | $\Omega$ | ≈ | $0.33477217511099128879751999171$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2\cdot2\cdot2^{2}\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.1552673170667523265872287736 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.155267317 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.334772 \cdot 1.924916 \cdot 32}{2^2} \\ & \approx 5.155267317\end{aligned}$$
Modular invariants
Modular form 418950.2.a.f
For more coefficients, see the Downloads section to the right.
Modular degree: | 4423680 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{10}$ | nonsplit multiplicative | 1 | 1 | 10 | 10 |
$3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
$5$ | $2$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
$7$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$19$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 456 = 2^{3} \cdot 3 \cdot 19 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 308 & 1 \\ 151 & 0 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 194 & 1 \\ 359 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 453 & 4 \\ 452 & 5 \end{array}\right),\left(\begin{array}{rr} 229 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 289 & 172 \\ 56 & 399 \end{array}\right)$.
The torsion field $K:=\Q(E[456])$ is a degree-$756449280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/456\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 69825 = 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
$3$ | additive | $6$ | \( 46550 = 2 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
$5$ | additive | $18$ | \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \) |
$7$ | additive | $26$ | \( 8550 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
$19$ | split multiplicative | $20$ | \( 22050 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 418950f
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 1710a1, its twist by $105$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.