Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2+2077983x+53625929391\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z+2077983xz^2+53625929391z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+33247725x+3432092728750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-14349/4, 14349/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 418950 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $-1242918137104107602906250$ | = | $-1 \cdot 2 \cdot 3^{26} \cdot 5^{6} \cdot 7^{7} \cdot 19 $ |
|
j-invariant: | $j$ | = | \( \frac{740480746823}{927484650666} \) | = | $2^{-1} \cdot 3^{-20} \cdot 7^{-1} \cdot 19^{-1} \cdot 83^{3} \cdot 109^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.3022819374460237964398381208$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.97530176236726211088915946400$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0514505724300596$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.861436688682807$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.067472636630059644514048200046$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 1\cdot2^{2}\cdot2^{2}\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $2.1591243721619086244495424015 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 2.159124372 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.067473 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 2.159124372\end{aligned}$$
Modular invariants
Modular form 418950.2.a.hs
For more coefficients, see the Downloads section to the right.
Modular degree: | 62914560 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$3$ | $4$ | $I_{20}^{*}$ | additive | -1 | 2 | 26 | 20 |
$5$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$7$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$19$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 15960 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 19 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 7 & 6 \\ 15954 & 15955 \end{array}\right),\left(\begin{array}{rr} 4036 & 6385 \\ 4055 & 6 \end{array}\right),\left(\begin{array}{rr} 5464 & 12765 \\ 11395 & 9574 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 15953 & 8 \\ 15952 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 10639 & 12760 \\ 1060 & 3159 \end{array}\right),\left(\begin{array}{rr} 9976 & 5195 \\ 7585 & 10806 \end{array}\right),\left(\begin{array}{rr} 10776 & 9185 \\ 1225 & 7656 \end{array}\right),\left(\begin{array}{rr} 6383 & 0 \\ 0 & 15959 \end{array}\right)$.
The torsion field $K:=\Q(E[15960])$ is a degree-$183000209817600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/15960\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 209475 = 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
$3$ | additive | $8$ | \( 46550 = 2 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
$5$ | additive | $14$ | \( 16758 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 19 \) |
$7$ | additive | $32$ | \( 8550 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
$19$ | split multiplicative | $20$ | \( 22050 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 418950.hs
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 798.c4, its twist by $105$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.