Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+4874x-181352\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+4874xz^2-181352z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+6317325x-8480099250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(137, 1681)$ | $0.39528863022094976693825548489$ | $\infty$ |
$(358/9, 6887/27)$ | $1.2203671624899140771314554436$ | $\infty$ |
Integral points
\( \left(32, 71\right) \), \( \left(32, -104\right) \), \( \left(53, 449\right) \), \( \left(53, -503\right) \), \( \left(137, 1681\right) \), \( \left(137, -1819\right) \), \( \left(257, 4121\right) \), \( \left(257, -4379\right) \), \( \left(512, 11431\right) \), \( \left(512, -11944\right) \), \( \left(2006, 88901\right) \), \( \left(2006, -90908\right) \), \( \left(3137, 174181\right) \), \( \left(3137, -177319\right) \)
Invariants
Conductor: | $N$ | = | \( 41650 \) | = | $2 \cdot 5^{2} \cdot 7^{2} \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $-21684031250000$ | = | $-1 \cdot 2^{4} \cdot 5^{9} \cdot 7^{4} \cdot 17^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{341425679}{578000} \) | = | $2^{-4} \cdot 5^{-3} \cdot 7^{2} \cdot 17^{-2} \cdot 191^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2439523910492215812502741504$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.20940328151959970775188976403$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8786313274347839$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.548350745766462$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.44964205918670884730423134034$ |
|
Real period: | $\Omega$ | ≈ | $0.35734658654443142368061725307$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 48 $ = $ 2\cdot2^{2}\cdot3\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $7.7125466408246212603135985489 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.712546641 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.357347 \cdot 0.449642 \cdot 48}{1^2} \\ & \approx 7.712546641\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 96768 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$5$ | $4$ | $I_{3}^{*}$ | additive | 1 | 2 | 9 | 3 |
$7$ | $3$ | $IV$ | additive | 1 | 2 | 4 | 0 |
$17$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 20.2.0.a.1, level \( 20 = 2^{2} \cdot 5 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 19 & 0 \end{array}\right),\left(\begin{array}{rr} 17 & 2 \\ 17 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 11 & 3 \end{array}\right),\left(\begin{array}{rr} 19 & 2 \\ 18 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[20])$ is a degree-$23040$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/20\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 1225 = 5^{2} \cdot 7^{2} \) |
$5$ | additive | $18$ | \( 1666 = 2 \cdot 7^{2} \cdot 17 \) |
$7$ | additive | $20$ | \( 850 = 2 \cdot 5^{2} \cdot 17 \) |
$17$ | split multiplicative | $18$ | \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 41650d consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 8330t1, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.980.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.19208000.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | ord | add | add | ord | ord | split | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 6 | 2 | - | - | 2 | 2 | 7 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 |
$\mu$-invariant(s) | 0 | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.