Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-13281x-561055\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-13281xz^2-561055z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1075788x-412236432\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-20656/289, 658329/4913)$ | $9.8672147467182018945676079254$ | $\infty$ |
$(-55, 0)$ | $0$ | $2$ |
Integral points
\( \left(-55, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 4160 \) | = | $2^{6} \cdot 5 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $11795053936640$ | = | $2^{30} \cdot 5 \cdot 13^{3} $ |
|
j-invariant: | $j$ | = | \( \frac{988345570681}{44994560} \) | = | $2^{-12} \cdot 5^{-1} \cdot 7^{3} \cdot 13^{-3} \cdot 1423^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2701701733175815497156846269$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.23044940247766358558983644471$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9543225417743602$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.811550062797546$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $9.8672147467182018945676079254$ |
|
Real period: | $\Omega$ | ≈ | $0.44597566450248803035583004078$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2^{2}\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $4.4005376534563992139922765982 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.400537653 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.445976 \cdot 9.867215 \cdot 4}{2^2} \\ & \approx 4.400537653\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 13824 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{20}^{*}$ | additive | 1 | 6 | 30 | 12 |
$5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$13$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.22 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \), index $384$, genus $9$, and generators
$\left(\begin{array}{rr} 738 & 7 \\ 977 & 1520 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 1537 & 24 \\ 1536 & 25 \end{array}\right),\left(\begin{array}{rr} 391 & 24 \\ 12 & 289 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 779 & 1536 \\ 780 & 1559 \end{array}\right),\left(\begin{array}{rr} 952 & 21 \\ 1275 & 1186 \end{array}\right),\left(\begin{array}{rr} 521 & 24 \\ 520 & 1 \end{array}\right),\left(\begin{array}{rr} 21 & 4 \\ 1460 & 1541 \end{array}\right),\left(\begin{array}{rr} 7 & 24 \\ 492 & 127 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[1560])$ is a degree-$2415329280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1560\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 65 = 5 \cdot 13 \) |
$3$ | good | $2$ | \( 320 = 2^{6} \cdot 5 \) |
$5$ | nonsplit multiplicative | $6$ | \( 832 = 2^{6} \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 320 = 2^{6} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 4160.o
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 130.a1, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{65}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-6}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.0.16640.2 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-6}, \sqrt{65})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.2.233280000.13 | \(\Z/6\Z\) | not in database |
$8$ | 8.4.308915776000000.11 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.1169858560000.13 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.22428057600.24 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$18$ | 18.0.596134143520159351388836242810470400000000.2 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | nonsplit | ord | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.