Properties

Label 41574.b
Number of curves $1$
Conductor $41574$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 41574.b1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(13\)\(1\)
\(41\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 41574.b do not have complex multiplication.

Modular form 41574.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - 2 q^{7} - q^{8} + q^{9} + q^{10} - 2 q^{11} - q^{12} + 2 q^{14} + q^{15} + q^{16} + 7 q^{17} - q^{18} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 41574.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
41574.b1 41574b1 \([1, 1, 0, -45633, -3772179]\) \(-2177286259681/717336\) \(-3462443860824\) \([]\) \(148176\) \(1.3794\) \(\Gamma_0(N)\)-optimal