Properties

Label 414736bu
Number of curves $2$
Conductor $414736$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bu1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 414736bu have rank \(1\).

Complex multiplication

The elliptic curves in class 414736bu do not have complex multiplication.

Modular form 414736.2.a.bu

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - 2 q^{5} + q^{9} - 4 q^{11} - 4 q^{15} + 6 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 414736bu

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
414736.bu1 414736bu1 \([0, -1, 0, -1149164, 379069664]\) \(109744/23\) \(35173628925910356224\) \([2]\) \(11354112\) \(2.4654\) \(\Gamma_0(N)\)-optimal
414736.bu2 414736bu2 \([0, -1, 0, 2479776, 2286440528]\) \(275684/529\) \(-3235973861183752772608\) \([2]\) \(22708224\) \(2.8120\)