Properties

Label 4144.a
Number of curves $2$
Conductor $4144$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 4144.a have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1 - T\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4144.a do not have complex multiplication.

Modular form 4144.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} - 2 q^{5} + q^{7} + q^{9} - 4 q^{11} - 6 q^{13} + 4 q^{15} - 4 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 4144.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4144.a1 4144e2 \([0, 1, 0, -1464, 20596]\) \(169556172914/4353013\) \(8914970624\) \([2]\) \(3456\) \(0.69149\)  
4144.a2 4144e1 \([0, 1, 0, 16, 1060]\) \(415292/469567\) \(-480836608\) \([2]\) \(1728\) \(0.34492\) \(\Gamma_0(N)\)-optimal