Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-267298033x+1668520212481\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-267298033xz^2+1668520212481z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-4276768523x+106781016830278\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-6005, 1751452)$ | $0.60427038020531291048730495081$ | $\infty$ |
$(33455/4, 1037391/8)$ | $4.5920991103264560677362309077$ | $\infty$ |
$(-75445/4, 75441/8)$ | $0$ | $2$ |
Integral points
\( \left(-6005, 1751452\right) \), \( \left(-6005, -1745448\right) \), \( \left(10417, 114726\right) \), \( \left(10417, -125144\right) \), \( \left(13001, 618606\right) \), \( \left(13001, -631608\right) \), \( \left(14081, 827496\right) \), \( \left(14081, -841578\right) \), \( \left(14803, 969996\right) \), \( \left(14803, -984800\right) \), \( \left(43363, 8440816\right) \), \( \left(43363, -8484180\right) \)
Invariants
Conductor: | $N$ | = | \( 413270 \) | = | $2 \cdot 5 \cdot 11 \cdot 13 \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $19696048188611894124740000$ | = | $2^{5} \cdot 5^{4} \cdot 11^{12} \cdot 13 \cdot 17^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{87501897507774086005761}{815991377947460000} \) | = | $2^{-5} \cdot 3^{3} \cdot 5^{-4} \cdot 11^{-12} \cdot 13^{-1} \cdot 3229^{3} \cdot 4583^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.6748097479472025147225331674$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.2582030759190944745977658585$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0322408901773137$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.399474389057654$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.6919786342632700698197607371$ |
|
Real period: | $\Omega$ | ≈ | $0.068828093541502785373486838189$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 480 $ = $ 5\cdot2\cdot( 2^{2} \cdot 3 )\cdot1\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $22.234050870095912096297608782 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 22.234050870 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.068828 \cdot 2.691979 \cdot 480}{2^2} \\ & \approx 22.234050870\end{aligned}$$
Modular invariants
Modular form 413270.2.a.ci
For more coefficients, see the Downloads section to the right.
Modular degree: | 137625600 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
$5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$11$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
$13$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$17$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 97240 = 2^{3} \cdot 5 \cdot 11 \cdot 13 \cdot 17 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 60776 & 6443 \\ 33609 & 62238 \end{array}\right),\left(\begin{array}{rr} 38897 & 91528 \\ 6868 & 74393 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 22879 & 0 \\ 0 & 97239 \end{array}\right),\left(\begin{array}{rr} 70721 & 91528 \\ 36924 & 74393 \end{array}\right),\left(\begin{array}{rr} 95099 & 72216 \\ 80818 & 20741 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 97234 & 97235 \end{array}\right),\left(\begin{array}{rr} 97233 & 8 \\ 97232 & 9 \end{array}\right),\left(\begin{array}{rr} 72608 & 34323 \\ 64685 & 11442 \end{array}\right)$.
The torsion field $K:=\Q(E[97240])$ is a degree-$416255915851776000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/97240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 3757 = 13 \cdot 17^{2} \) |
$3$ | good | $2$ | \( 37570 = 2 \cdot 5 \cdot 13 \cdot 17^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 41327 = 11 \cdot 13 \cdot 17^{2} \) |
$11$ | split multiplicative | $12$ | \( 37570 = 2 \cdot 5 \cdot 13 \cdot 17^{2} \) |
$13$ | split multiplicative | $14$ | \( 31790 = 2 \cdot 5 \cdot 11 \cdot 17^{2} \) |
$17$ | additive | $146$ | \( 1430 = 2 \cdot 5 \cdot 11 \cdot 13 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 413270.ci
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1430.h2, its twist by $17$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.